题目大意

有两个集合\(S_1,S_2 \subseteq [2,n] (n\leq 500)\),且对于\(\forall x\in S_1,y\in S_2 , gcd(x,y)=1\)

求\(S_1,S_2\)有多少种方案

两种方案不同,当且仅当 方案一的\(S_1\)与方案二的\(S_1\)存在一个元素不同 或 方案一的\(S_2\)与方案二的\(S_2\)存在一个元素不同

题解

当\(n\leq 100\)时,设\(f(A_1,A_2)\)表示当\(S_1\)中所有数的质因子集合为\(A_1\),\(S_2\)中所有数的质因子集合为\(A_2\)时的方案数,枚举2到\(n\)的每个数放到哪个集合里,直接dp

当\(n\leq 500\)时,发现对于每个大于\(\sqrt{n}\)的质数,它作为质因子时的幂次数不超过一

那么对于每个大于\(\sqrt{n}\)的质数,枚举包含它的所有数都被分到\(S_1\)还是\(S_2\),设\(g(i,A_1,A_2)\)表示当包含当前枚举的这个质因数的数都在\(S_i\)里,\(S_1\)中所有数的质因子集合为\(A_1\),\(S_2\)中所有数的质因子集合为\(A_2\)时的方案数,还是直接dp

代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define maxn 510
#define maxs ((1<<8)+7)
#define LL long long
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(int x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
int n,mod,no[maxn],p[maxn],cntp,bul[maxn][maxn],son[maxn],f[maxs][maxs],f1[maxs][maxs],vis[maxn],f2[maxs][maxs];
signed main()
{
n=read(),mod=read();
rep(i,2,n)
if(!no[i])
{
p[++cntp]=i;
for(int j=i+i;j<=n;j+=i)no[j]=1;
}
rep(i,2,n)
{
int lim=min(8,cntp);
rep(j,1,lim)if(i%p[j]==0)son[i]|=(1<<(j-1));
int f=8;
for(int j=9;j<=cntp&&p[j]<=i;j++)if(i%p[j]==0){f=j;break;}
bul[f][++bul[f][0]]=i;
}
int fulls=(1<<8)-1;f[0][0]=1;
rep(j,1,bul[8][0])
{
int num=bul[8][j];
dwn(s1,fulls,0)
dwn(s2,fulls,0)
{
if(!(son[num]&s2))(f[s1|son[num]][s2]+=f[s1][s2])%=mod;
if(!(son[num]&s1))(f[s1][s2|son[num]]+=f[s1][s2])%=mod;
}
}
rep(i,9,cntp)
{
if(bul[i][0])memcpy(f1,f,sizeof(f)),memcpy(f2,f,sizeof(f));
rep(j,1,bul[i][0])
{
int num=bul[i][j];
dwn(s1,fulls,0)
dwn(s2,fulls,0)
{
if(!(son[num]&s2))(f1[s1|son[num]][s2]+=f1[s1][s2])%=mod;
if(!(son[num]&s1))(f2[s1][s2|son[num]]+=f2[s1][s2])%=mod;
}
}
if(bul[i][0])rep(s1,0,fulls)rep(s2,0,fulls)f[s1][s2]=((f1[s1][s2]+f2[s1][s2]-f[s1][s2])%mod+mod)%mod;//既不放1号集合也不放2号集合的情况算重复了,要减去
}
int ans=0;
rep(s1,0,fulls)rep(s2,0,fulls)(ans+=f[s1][s2])%=mod;
write(ans);
return 0;
}

并不对劲的bzoj4197:loj2131:uoj129:p2150:[NOI2015]寿司晚宴的更多相关文章

  1. BZO4197 & 洛谷2150 & UOJ129:[NOI2015]寿司晚宴——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4197 https://www.luogu.org/problemnew/show/P2150 ht ...

  2. 【uoj129】 NOI2015—寿司晚宴

    http://uoj.ac/problem/129 (题目链接) 题意 给出2~n这n-1个数,求选2个集合,使得从两集合中任意各选取1个数出来它们都互质.求方案数. Solution PoPoQQQ ...

  3. UOJ #129 / BZOJ 4197 / 洛谷 P2150 - [NOI2015]寿司晚宴 (状压dp+数论+容斥)

    题面传送门 题意: 你有一个集合 \(S={2,3,\dots,n}\) 你要选择两个集合 \(A\) 和 \(B\),满足: \(A \subseteq S\),\(B \subseteq S\), ...

  4. p2150 [NOI2015]寿司晚宴

    传送门 分析 我们发现对于大于$\sqrt(n)$的数每个数最多只会包含一个 所以我们把每个数按照大质数的大小从小到大排序 我们知道对于一种大质数只能被同一个人取 所以f1表示被A取,f2表示被B取 ...

  5. 洛谷$P2150\ [NOI2015]$寿司晚宴 $dp$

    正解:$dp$ 解题报告: 传送门$QwQ$. 遇事不决写$dp$($bushi$.讲道理这题一看就感觉除了$dp$也没啥很好的算法能做了,于是考虑$dp$呗 先看部分分?$30pts$发现质因数个数 ...

  6. 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数

    [BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...

  7. [UOJ#129][BZOJ4197][Noi2015]寿司晚宴

    [UOJ#129][BZOJ4197][Noi2015]寿司晚宴 试题描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司 ...

  8. [BZOJ4197][Noi2015]寿司晚宴

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 412  Solved: 279[Submit][Status] ...

  9. BZOJ 4197: [Noi2015]寿司晚宴( dp )

    N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个 ...

随机推荐

  1. [luoguP1627] 中位数(模拟?)

    传送门 水题,怎么评到这个难度的? #include <cstdio> #include <iostream> #define N 200001 int n, b, p, an ...

  2. bzoj3514 Codechef MARCH14 GERALD07加强版 lct预处理+主席树

    Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1951  Solved: 746[Submi ...

  3. SpringData JPA进阶查询—JPQL/原生SQL查询、分页处理、部分字段映射查询

    上一篇介绍了入门基础篇SpringDataJPA访问数据库.本篇介绍SpringDataJPA进一步的定制化查询,使用JPQL或者SQL进行查询.部分字段映射.分页等.本文尽量以简单的建模与代码进行展 ...

  4. CodeForces - 356A Knight Tournament

    http://codeforces.com/problemset/problem/356/A 首先理解题意 每次给出l 和r  在l - r之间还有资格的选手中得出一个胜者 暴力思路: 首先维护还有资 ...

  5. 《TCP/IP详解卷1:协议》——第4章 ARP:地址解析协议(转载)

    章节回顾: 1.引言 当一台主机把以太网数据帧发送到位于同一局域网上的另一台主机时,是根据48 bit的以太网地址来确定目的接口的.设备驱动程序从不检查IP数据报中的目的IP地址.地址解析为这两种不同 ...

  6. django学习之- Ajax

    提示:jquery要使用1版本,因为高版本已不兼容低版本的游览器.参考url:http://www.cnblogs.com/wupeiqi/articles/5703697.html原生ajax:Aj ...

  7. 【永久激活,视频教程,超级详细】IntelliJ idea 2018.3安装+激活+汉化

    简介 IDEA 全称IntelliJ IDEA,是用于java语言开发的集成环境(也可用于其他语言),IntelliJ在业界被公认为最好的java开发工具之一,尤其在智能代码助手.代码自动提示.重构. ...

  8. ModelAndView对象作用

    ModelAndView ModelAndView对象有两个作用: 作用一  :设置转向地址,如下所示(这也是ModelAndView和ModelMap的主要区别) ModelAndView mv = ...

  9. GO语言 --socket.io

    socket.io是对websocket的封装以及扩展, 可以跨平台使用, 具体可看官网.. GO语言实现: package main import ( "github.com/googol ...

  10. 百度统计的JS脚本原理解析

    一句话:在你的网站上加载百度统计的脚本,这个脚本会收集你的本地信息,然后发送给百度统计网站 https://blog.csdn.net/iqzq123/article/details/8877645 ...