BZOJ_3998_[TJOI2015]弦论_后缀自动机

Description

对于一个给定长度为N的字符串,求它的第K小子串是什么。

Input

第一行是一个仅由小写英文字母构成的字符串S

第二行为两个整数T和K,T为0则表示不同位置的相同子串算作一个。T=1则表示不同位置的相同子串算作多个。K的意义如题所述。

Output

输出仅一行,为一个数字串,为第K小的子串。如果子串数目不足K个,则输出-1

Sample Input

aabc
0 3

Sample Output

aab

HINT

N<=5*10^5

T<2
K<=10^9

首先肯定是要一位一位确定字符,这样我们就需要两个标记。
建出后缀自动机。
设siz[i]表示i对应状态在串中出现了多少次,f[i]表示i对应子串有多少种转移方法。
siz[i]比较好求,如果表示不同位置的相同子串算作一个所有siz都为1,否则siz可以通过后缀树DP出来。
f[i]用拓扑序DP出来,初始值为siz。
然后按位确定每一位的字符即可。
 
代码:
#include <cstdio>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 1000050
int ch[N][26],fa[N],dep[N],siz[N],cnt=1,lst=1,f[N];
int ws[N],a[N];
char w[N];
void insert(int x) {
int p=lst,np=++cnt,q,nq;
lst=np; dep[np]=dep[p]+1;
for(;p&&!ch[p][x];p=fa[p]) ch[p][x]=np;
if(!p) fa[np]=1;
else {
q=ch[p][x];
if(dep[q]==dep[p]+1) fa[np]=q;
else {
fa[nq=++cnt]=fa[q];
dep[nq]=dep[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
fa[q]=fa[np]=nq;
for(;p&&ch[p][x]==q;p=fa[p]) ch[p][x]=nq;
}
}
siz[np]=1;
}
void print() {
int i,j;
printf("test-------------------------------------------\n");
for(i=1;i<=cnt;i++) {
printf("p=%d,siz=%d,dep=%d,fa=%d\n",i,siz[i],dep[i],fa[i]);
for(j=0;j<26;j++) {
if(ch[i][j]) {
printf("ch(%d)(%c)=%d\n",i,j+'a',ch[i][j]);
}
}
}
printf("lst=%d\n",lst);
}
int main() {
int T,K;
scanf("%s%d%d",w+1,&T,&K);
int n=strlen(w+1);
int i,j,p;
for(i=1;i<=n;i++) insert(w[i]-'a');
for(i=1;i<=cnt;i++) ws[dep[i]]++;
for(i=1;i<=n;i++) ws[i]+=ws[i-1];
for(i=cnt;i;i--) a[ws[dep[i]]--]=i;
if(T) {
for(i=cnt;i;i--) {
p=a[i]; siz[fa[p]]+=siz[p];
}
}else for(i=cnt;i;i--) siz[a[i]]=1;
for(siz[1]=0,i=cnt;i;i--) {
p=a[i];
for(f[p]=siz[p],j=0;j<26;j++) f[p]+=f[ch[p][j]];
}
if(f[1]<K) puts("-1");
else {
p=1;
while(K>siz[p]) {
K-=siz[p];
for(i=0;i<26;i++) {
if(K<=f[ch[p][i]]) {printf("%c",i+'a'),p=ch[p][i]; break;}
else K-=f[ch[p][i]];
}
}
puts("");
}
}
 

BZOJ_3998_[TJOI2015]弦论_后缀自动机的更多相关文章

  1. [bzoj3998][TJOI2015]弦论_后缀自动机

    弦论 bzoj-3998 TJOI-2015 题目大意:给定一个字符串,求其$k$小子串. 注释:$1\le length \le 5\cdot 10^5$,$1\le k\le 10^9$. 想法: ...

  2. 2018.12.15 bzoj3998: [TJOI2015]弦论(后缀自动机)

    传送门 后缀自动机基础题. 求第kkk小的子串(有可能要求本质不同) 直接建出samsamsam,然后给每个状态赋值之后在上面贪心选最小的(过程可以类比主席树/平衡树的查询操作)即可. 代码: #in ...

  3. BZOJ3998 TJOI2015 弦论 【后缀自动机】【贪心】

    Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T和K,T为0则表示不同位置的相同子串算作一个. ...

  4. BZOJ3998 [TJOI2015]弦论 【后缀自动机】

    题目 对于一个给定长度为N的字符串,求它的第K小子串是什么. 输入格式 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T和K,T为0则表示不同位置的相同子串算作一个.T=1则表示不同位置 ...

  5. BZOJ3998: [TJOI2015]弦论(后缀自动机,Parent树)

    Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T和K,T为0则表示不同位置的相同子串算作一个. ...

  6. [TJOI2015]弦论(后缀自动机)

    传送门 题意: 对给定字符串\(s\),求其第\(k\)小子串,重复串被计入以及不被计入这两种情况都需考虑. 思路: 首先构建后缀自动机,之后就考虑在后缀自动机上\(dp\). 我们知道如果要考虑重复 ...

  7. 【洛谷 P3975】 [TJOI2015]弦论(后缀自动机)

    题目链接 建出后缀自动机. T=0,每个子串算一次,否则每个子串算该子串的\(endpos\)集合大小次. 用\(f[i]\)表示结点\(i\)表示的\(endpos\)集合大小,则\(f[i]\)为 ...

  8. BZOJ3998 TJOI2015弦论(后缀自动机)

    先考虑相同子串视为一个.按SAM的拓扑序预处理出从每个节点开始能得到多少个本质不同子串(注意虽然一个节点对应多个子串,但到达该点时当前的子串显然是确定为其中一个的),然后按位贪心即可. 相同子串视为多 ...

  9. 【BZOJ3998】弦论(后缀自动机)

    [BZOJ3998]弦论(后缀自动机) 题面 BZOJ 题解 这题应该很简单 构建出\(SAM\)后 求出每个点往后还能构建出几个串 按照拓扑序\(dp\)一些就好了 然后就是第\(k\)大,随便搞一 ...

随机推荐

  1. CodeForces 632A

    A - Grandma Laura and Apples Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & ...

  2. JS 回车跳转

    window.onload = function () { SeteasyuiTheme(); jQuery(':input:enabled').addClass('enterIndex'); var ...

  3. 【DFS】codeforces B. Sagheer, the Hausmeister

    http://codeforces.com/contest/812/problem/B [题意] 有一个n*m的棋盘,每个小格子有0或1两种状态,现在要把所有的1都变成0,问最少的步数是多少?初始位置 ...

  4. 【BZOJ4517】排列计数(排列组合)

    题意:1-n的一个序列,其中有m个a[i]=i,求方案数 n,m<=1000000 题意:显然ANS=c(n,m)*d[n-m] d[i]为错排方案数=d[i-1]*n+(-1)^n ; ..] ...

  5. 2016 ACM/ICPC 区域赛(北京) E 题 bfs

    https://vjudge.net/problem/UVALive-7672 题意    输入一个五位数n 问由12345变到n的操作最少次数 不可达输出-1 有三种操作 1.交换相邻的位置 次数不 ...

  6. 【Arcgis Server】程序动态发布MXD到Arcgis Server

    http://dkay.blogbus.com/logs/47727282.html protected void Button14_Click(object sender, EventArgs e) ...

  7. c++之函数对象、bind函数

    函数对象实质上是一个实现了operator()--括号操作符--的类. class Add { public: int operator()(int a, int b) { return a + b; ...

  8. JavaScript Prototype in Plain Language

    非常好的文章: http://javascriptissexy.com/javascript-prototype-in-plain-detailed-language/ jan. 25 2013 14 ...

  9. Office EXCEL 如何实现在单元格内换行

    按A/T+回车可以实现手动换行      

  10. 设计模式 之代理(Proxy)模式

    为什么这里要定义代理呢?所谓代理代理,当然就是你不想做的事.找别人去做,这就是代理.所以,当你写代码的时候.你想保持类的简单性.重用性.你就能够把事件尽量都交给其他类去做.自己仅仅管做好自己的事.也就 ...