对n<=30(其实可以100)大小的矩阵A求A^1+A^2+……+A^K,K<=1e9,A中的数%m。

从K的二进制位入手。K分解二进制,比如10110,令F[i]=A^1+A^2+……+A^(2^i),那么答案就是F[10000]*A^110+F[100]*A^10+F[10]+A^0。也就是说如果知道F就可以得答案。

F亦可递推,F[i]=F[i-1]*(A^(2^i-1)+A^0)。完美!什么log方,都是假的!

 #include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
//#include<iostream>
using namespace std; int n,K,mod;
#define maxn 111
#define LL long long
typedef LL mat[maxn][maxn];
mat f,a,last,tmp,t,ans,E;
void init(mat &a)
{
memset(a,,sizeof(a));
for (int i=;i<=n;i++) a[i][i]=;
}
void add(mat a,mat b,mat &ans)
{
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
ans[i][j]=(a[i][j]+b[i][j])%mod;
}
void mul(mat a,mat b,mat &ans)
{
mat t;
memset(t,,sizeof(t));
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
for (int k=;k<=n;k++)
t[i][j]=(t[i][j]+a[i][k]*b[k][j]%mod)%mod;
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
ans[i][j]=t[i][j];
}
int main()
{
scanf("%d%d%d",&n,&K,&mod);
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
scanf("%lld",&a[i][j]),tmp[i][j]=f[i][j]=a[i][j];
init(last);init(E);
memset(ans,,sizeof(ans));
while (K)
{
if (K&)
{
mul(f,last,t);
add(ans,t,ans);
mul(last,tmp,last);
}
add(tmp,E,t);
mul(f,t,f);
mul(tmp,tmp,tmp);
K>>=;
}
for (int i=;i<=n;i++)
{
for (int j=;j<=n;j++)
printf("%lld ",ans[i][j]);
puts("");
}
return ;
}

POJ3233:Matrix Power Series的更多相关文章

  1. C++题解:Matrix Power Series ——矩阵套矩阵的矩阵加速

    Matrix Power Series r时间限制: 1 Sec 内存限制: 512 MB 题目描述 给定矩阵A,求矩阵S=A^1+A^2+--+A^k,输出矩阵,S矩阵中每个元都要模m. 数据范围: ...

  2. POJ 3233:Matrix Power Series 矩阵快速幂 乘积

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 18450   Accepted:  ...

  3. POJ3233 [C - Matrix Power Series] 矩阵乘法

    解题思路 题目里要求\(\sum_{i=1}^kA^i\),我们不妨再加上一个单位矩阵,求\(\sum_{i=0}^kA^i\).然后我们发现这个式子可以写成这样的形式:\(A(A(A...)+E)+ ...

  4. 【poj3233】 Matrix Power Series

    http://poj.org/problem?id=3233 (题目链接) 题意 给出一个n×n的矩阵A,求模m下A+A2+A3+…+Ak 的值 Solution 今日考试就A了这一道题.. 当k为偶 ...

  5. Matrix Power Series(POJ 3233)

    原题如下: Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 28044   Acce ...

  6. [POJ3233]Matrix Power Series 分治+矩阵

    本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [POJ3233]Matrix Power Series 分治+矩阵 题目大意 A为n×n(n<= ...

  7. POJ3233 Matrix Power Series 矩阵快速幂 矩阵中的矩阵

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 27277   Accepted:  ...

  8. POJ3233]Matrix Power Series && [HDU1588]Gauss Fibonacci

    题目:Matrix Power Series 传送门:http://poj.org/problem?id=3233 分析: 方法一:引用Matrix67大佬的矩阵十题:这道题两次二分,相当经典.首先我 ...

  9. 线性代数(矩阵乘法):POJ 3233 Matrix Power Series

    Matrix Power Series   Description Given a n × n matrix A and a positive integer k, find the sum S = ...

随机推荐

  1. calc() 计算CSS属性值

    calc()是css3的一个新增的功能,用来指定元素的长度.比如说,你可以使用calc()给元素的border.margin.pading.font-size和width等属性设置动态值.calc() ...

  2. Android SlidingTabLayout的使用--替代ActionBar的Tab导航

    最近在使用ActionBar的时候,如果使用的是最新版V7包或者最新的SDK平台,就会发现 ActionBar的导航功能已经不建议使用了.主要的原因是ActionBar自带Tab导航自定义性差(只能通 ...

  3. Kali部署openvas初探与实践

    openvas安装 1.我用的清华大学的源,所以我把/etc/apt/source.list中下入如下源地址 #清华大学deb http://mirrors.tuna.tsinghua.edu.cn/ ...

  4. Selenium私房菜系列3 -- Selenium API参考手册【ZZ】

    大家在编写测试案例想查阅Selenium API说明时,可以查阅本文,否则请跳过! (注:这里API版本比较老,新版本的Selenium的API在这里不一定能找到.) Selenium API说明文档 ...

  5. Elasticsearch插件清单

    1.API插件:主要对Elasticsearch添加的API特性或者功能,通常用于搜索或者映射 2. 报警插件: 当Elasticsearch的索引指标超过阀值时就会触发 3. 分词插件:ik是比较好 ...

  6. Windows程序设计2(消息机制、菜单)

    一 .小记; PostQuitMessage(0); 产生WM_QUIT消息给进程队列,且立即返回,同时使得消息循环退出,使得进程终止.(其实它通过PostMessage(hWnd,WM_QUIT,0 ...

  7. Docker下redis的主从配置

    1.拉取redis镜像docker pull redis2.启动3个redis容器服务,分别使用到6379.6380.6381端口docker run --name redis-6379 -p 637 ...

  8. centos7 搭建双网卡bond1(主备模式)实例

    前景须知: 在redhat6 中网卡叫bond,在redhat7及centos7中改名team,此处只记录centos7中双网卡主备搭建过程. 应用情景:实现网络的高可用,防止一条网线或交换机故障影响 ...

  9. flask 项目部分业务逻辑

    @passport_blu.route('/image_code') def get_image_code(): """ 生成图片验证码并返回 1. 取到参数 2. 判断 ...

  10. 深度剖析 MySQL 事务隔离

    概述 今天主要分享下MySQL事务隔离级别的实现原理,因为只有InnoDB支持事务,所以这里的事务隔离级别是指InnoDB下的事务隔离级别. 隔离级别 读未提交:一个事务可以读取到另一个事务未提交的修 ...