Netlink通信机制【转】
本文转载自:http://www.cnblogs.com/wenqiang/p/6306727.html
一、什么是Netlink通信机制
Netlink套接字是用以实现用户进程与内核进程通信的一种特殊的进程间通信(IPC) ,也是网络应用程序与内核通信的最常用的接口。
Netlink 是一种特殊的 socket,它是 Linux 所特有的,类似于 BSD 中的AF_ROUTE 但又远比它的功能强大,目前在Linux 内核中
使用netlink 进行应用与内核通信的应用很多; 包括:路由 daemon(NETLINK_ROUTE),用户态 socket 协议(NETLINK_USERSOCK),
防火墙(NETLINK_FIREWALL),netfilter 子系统(NETLINK_NETFILTER),内核事件向用户态通知(NETLINK_KOBJECT_UEVENT),
通用 netlink(NETLINK_GENERIC)等。
Netlink 是一种在内核与用户应用间进行双向数据传输的非常好的方式,用户态应用使用标准的 socket API 就可以使用 netlink 提供的强大功能,
内核态需要使用专门的内核 API 来使用 netlink。
Netlink 相对于系统调用,ioctl 以及 /proc文件系统而言具有以下优点:
1,netlink使用简单,只需要在include/linux/netlink.h中增加一个新类型的 netlink 协议定义即可,(如 #define NETLINK_TEST 20 然后,内核和用户态应用就可以立即通过 socket API 使用该 netlink 协议类型进行数据交换);
2. netlink是一种异步通信机制,在内核与用户态应用之间传递的消息保存在socket缓存队列中,发送消息只是把消息保存在接收者的socket的接收队列,而不需要等待接收者收到消息;
3.使用 netlink 的内核部分可以采用模块的方式实现,使用 netlink 的应用部分和内核部分没有编译时依赖;
4.netlink 支持多播,内核模块或应用可以把消息多播给一个netlink组,属于该neilink 组的任何内核模块或应用都能接收到该消息,内核事件向用户态的通知机制就使用了这一特性;
5.内核可以使用 netlink 首先发起会话;
二、Netlink常用数据结构及函数
用户态应用使用标准的 socket API有(sendto()),recvfrom(); sendmsg(), recvmsg())
下面简单介绍几种NETLINK用户态通信的常用数据结构
1、用户态数据结构
Netlink通信跟常用UDP Socket通信类似:
struct sockaddr_nl 是netlink通信地址跟普通socket struct sockaddr_in类似
struct sockaddr_nl结构:
1 struct sockaddr_nl {
2 __kernel_sa_family_t nl_family; /* AF_NETLINK (跟AF_INET对应)*/
3 unsigned short nl_pad; /* zero */
4 __u32 nl_pid; /* port ID (通信端口号)*/
5 __u32 nl_groups; /* multicast groups mask */
6 };
struct nlmsghd 结构:
1 /* struct nlmsghd 是netlink消息头*/
2 struct nlmsghdr {
3 __u32 nlmsg_len; /* Length of message including header */
4 __u16 nlmsg_type; /* Message content */
5 __u16 nlmsg_flags; /* Additional flags */
6 __u32 nlmsg_seq; /* Sequence number */
7 __u32 nlmsg_pid; /* Sending process port ID */
8 };
(1)nlmsg_len:整个netlink消息的长度(包含消息头);
(2)nlmsg_type:消息状态,内核在include/uapi/linux/netlink.h中定义了以下4种通用的消息类型,它们分别是:
1 #define NLMSG_NOOP 0x1 /* Nothing. */
2 #define NLMSG_ERROR 0x2 /* Error */
3 #define NLMSG_DONE 0x3 /* End of a dump */
4 #define NLMSG_OVERRUN 0x4 /* Data lost */
5
6 #define NLMSG_MIN_TYPE 0x10 /* < 0x10: reserved control messages */
7
8 /*NLMSG_NOOP:不执行任何动作,必须将该消息丢弃;
9 NLMSG_ERROR:消息发生错误;
10 NLMSG_DONE:标识分组消息的末尾;
11 NLMSG_OVERRUN:缓冲区溢出,表示某些消息已经丢失。
12 NLMSG_MIN_TYPEK:预留 */
(3)nlmsg_flags:消息标记,它们用以表示消息的类型,如下
1 /* Flags values */
2
3 #define NLM_F_REQUEST 1 /* It is request message. */
4 #define NLM_F_MULTI 2 /* Multipart message, terminated by NLMSG_DONE */
5 #define NLM_F_ACK 4 /* Reply with ack, with zero or error code */
6 #define NLM_F_ECHO 8 /* Echo this request */
7 #define NLM_F_DUMP_INTR 16 /* Dump was inconsistent due to sequence change */
8
9 /* Modifiers to GET request */
10 #define NLM_F_ROOT 0x100 /* specify tree root */
11 #define NLM_F_MATCH 0x200 /* return all matching */
12 #define NLM_F_ATOMIC 0x400 /* atomic GET */
13 #define NLM_F_DUMP (NLM_F_ROOT|NLM_F_MATCH)
14
15 /* Modifiers to NEW request */
16 #define NLM_F_REPLACE 0x100 /* Override existing */
17 #define NLM_F_EXCL 0x200 /* Do not touch, if it exists */
18 #define NLM_F_CREATE 0x400 /* Create, if it does not exist */
19 #define NLM_F_APPEND 0x800 /* Add to end of list */
(4)nlmsg_seq:消息序列号,用以将消息排队,有些类似TCP协议中的序号(不完全一样),但是netlink的这个字段是可选的,不强制使用;
(5)nlmsg_pid:发送端口的ID号,对于内核来说该值就是0,对于用户进程来说就是其socket所绑定的ID号。
struct msghdr 结构体
1 struct iovec { /* Scatter/gather array items */
2 void *iov_base; /* Starting address */
3 size_t iov_len; /* Number of bytes to transfer */
4 };
5 /* iov_base: iov_base指向数据包缓冲区,即参数buff,iov_len是buff的长度。msghdr中允许一次传递多个buff,
6 以数组的形式组织在 msg_iov中,msg_iovlen就记录数组的长度 (即有多少个buff)
7 */
8 struct msghdr {
9 void *msg_name; /* optional address */
10 socklen_t msg_namelen; /* size of address */
11 struct iovec *msg_iov; /* scatter/gather array */
12 size_t msg_iovlen; /* # elements in msg_iov */
13 void *msg_control; /* ancillary data, see below */
14 size_t msg_controllen; /* ancillary data buffer len */
15 int msg_flags; /* flags on received message */
16 };
17 /* msg_name: 数据的目的地址,网络包指向sockaddr_in, netlink则指向sockaddr_nl;
18 msg_namelen: msg_name 所代表的地址长度
19 msg_iov: 指向的是缓冲区数组
20 msg_iovlen: 缓冲区数组长度
21 msg_control: 辅助数据,控制信息(发送任何的控制信息)
22 msg_controllen: 辅助信息长度
23 msg_flags: 消息标识
24 */
2. netlink 内核数据结构、常用宏及函数:
netlink消息类型:
1 #define NETLINK_ROUTE 0 /* Routing/device hook */
2 #define NETLINK_UNUSED 1 /* Unused number */
3 #define NETLINK_USERSOCK 2 /* Reserved for user mode socket protocols */
4 #define NETLINK_FIREWALL 3 /* Unused number, formerly ip_queue */
5 #define NETLINK_SOCK_DIAG 4 /* socket monitoring */
6 #define NETLINK_NFLOG 5 /* netfilter/iptables ULOG */
7 #define NETLINK_XFRM 6 /* ipsec */
8 #define NETLINK_SELINUX 7 /* SELinux event notifications */
9 #define NETLINK_ISCSI 8 /* Open-iSCSI */
10 #define NETLINK_AUDIT 9 /* auditing */
11 #define NETLINK_FIB_LOOKUP 10
12 #define NETLINK_CONNECTOR 11
13 #define NETLINK_NETFILTER 12 /* netfilter subsystem */
14 #define NETLINK_IP6_FW 13
15 #define NETLINK_DNRTMSG 14 /* DECnet routing messages */
16 #define NETLINK_KOBJECT_UEVENT 15 /* Kernel messages to userspace */
17 #define NETLINK_GENERIC 16
18 /* leave room for NETLINK_DM (DM Events) */
19 #define NETLINK_SCSITRANSPORT 18 /* SCSI Transports */
20 #define NETLINK_ECRYPTFS 19
21 #define NETLINK_RDMA 20
22 #define NETLINK_CRYPTO 21 /* Crypto layer */
23
24 #define NETLINK_INET_DIAG NETLINK_SOCK_DIAG
25
26 #define MAX_LINKS 32
netlink常用宏:
1 #define NLMSG_ALIGNTO 4U
2 /* 宏NLMSG_ALIGN(len)用于得到不小于len且字节对齐的最小数值 */
3 #define NLMSG_ALIGN(len) ( ((len)+NLMSG_ALIGNTO-1) & ~(NLMSG_ALIGNTO-1) )
4
5 /* Netlink 头部长度 */
6 #define NLMSG_HDRLEN ((int) NLMSG_ALIGN(sizeof(struct nlmsghdr)))
7
8 /* 计算消息数据len的真实消息长度(消息体 + 消息头)*/
9 #define NLMSG_LENGTH(len) ((len) + NLMSG_HDRLEN)
10
11 /* 宏NLMSG_SPACE(len)返回不小于NLMSG_LENGTH(len)且字节对齐的最小数值 */
12 #define NLMSG_SPACE(len) NLMSG_ALIGN(NLMSG_LENGTH(len))
13
14 /* 宏NLMSG_DATA(nlh)用于取得消息的数据部分的首地址,设置和读取消息数据部分时需要使用该宏 */
15 #define NLMSG_DATA(nlh) ((void*)(((char*)nlh) + NLMSG_LENGTH(0)))
16
17 /* 宏NLMSG_NEXT(nlh,len)用于得到下一个消息的首地址, 同时len 变为剩余消息的长度 */
18 #define NLMSG_NEXT(nlh,len) ((len) -= NLMSG_ALIGN((nlh)->nlmsg_len), \
19 (struct nlmsghdr*)(((char*)(nlh)) + NLMSG_ALIGN((nlh)->nlmsg_len)))
20
21 /* 判断消息是否 >len */
22 #define NLMSG_OK(nlh,len) ((len) >= (int)sizeof(struct nlmsghdr) && \
23 (nlh)->nlmsg_len >= sizeof(struct nlmsghdr) && \
24 (nlh)->nlmsg_len <= (len))
25
26 /* NLMSG_PAYLOAD(nlh,len) 用于返回payload的长度*/
27 #define NLMSG_PAYLOAD(nlh,len) ((nlh)->nlmsg_len - NLMSG_SPACE((len)))
netlink 内核常用函数:
netlink_kernel_create内核函数用于创建 内核socket用用户态通信
1 static inline struct sock *
2 netlink_kernel_create(struct net *net, int unit, struct netlink_kernel_cfg *cfg)
3 /* net: net指向所在的网络命名空间, 一般默认传入的是&init_net(不需要定义); 定义在net_namespace.c(extern struct net init_net);
4 unit:netlink协议类型
5 cfg: cfg存放的是netlink内核配置参数(如下)
6 */
7
8 /* optional Netlink kernel configuration parameters */
9 struct netlink_kernel_cfg {
10 unsigned int groups;
11 unsigned int flags;
12 void (*input)(struct sk_buff *skb); /* input 回调函数 */
13 struct mutex *cb_mutex;
14 void (*bind)(int group);
15 bool (*compare)(struct net *net, struct sock *sk);
16 };
单播netlink_unicast() 和 多播netlink_broadcast()
1 /* 来发送单播消息 */
2 extern int netlink_unicast(struct sock *ssk, struct sk_buff *skb, __u32 portid, int nonblock);
3 /* ssk: netlink socket
4 skb: skb buff 指针
5 portid: 通信的端口号
6 nonblock:表示该函数是否为非阻塞,如果为1,该函数将在没有接收缓存可利用时立即返回,而如果为0,该函数在没有接收缓存可利用 定时睡眠
7 */
8
9 /* 用来发送多播消息 */
10 extern int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, __u32 portid,
11 __u32 group, gfp_t allocation);
12 /* ssk: 同上(对应netlink_kernel_create 返回值)、
13 skb: 内核skb buff
14 portid: 端口id
15 group: 是所有目标多播组对应掩码的"OR"操作的合值。
16 allocation: 指定内核内存分配方式,通常GFP_ATOMIC用于中断上下文,而GFP_KERNEL用于其他场合。
17 这个参数的存在是因为该API可能需要分配一个或多个缓冲区来对多播消息进行clone
18 */
三、netlink实例
(1)用户态程序 (sendto(), recvfrom())
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/socket.h>
4 #include <string.h>
5 #include <linux/netlink.h>
6 #include <stdint.h>
7 #include <unistd.h>
8 #include <errno.h>
9
10 #define NETLINK_TEST 30
11 #define MSG_LEN 125
12 #define MAX_PLOAD 125
13
14 typedef struct _user_msg_info
15 {
16 struct nlmsghdr hdr;
17 char msg[MSG_LEN];
18 } user_msg_info;
19
20 int main(int argc, char **argv)
21 {
22 int skfd;
23 int ret;
24 user_msg_info u_info;
25 socklen_t len;
26 struct nlmsghdr *nlh = NULL;
27 struct sockaddr_nl saddr, daddr;
28 char *umsg = "hello netlink!!";
29
30 /* 创建NETLINK socket */
31 skfd = socket(AF_NETLINK, SOCK_RAW, NETLINK_TEST);
32 if(skfd == -1)
33 {
34 perror("create socket error\n");
35 return -1;
36 }
37
38 memset(&saddr, 0, sizeof(saddr));
39 saddr.nl_family = AF_NETLINK; //AF_NETLINK
40 saddr.nl_pid = 100; //端口号(port ID)
41 saddr.nl_groups = 0;
42 if(bind(skfd, (struct sockaddr *)&saddr, sizeof(saddr)) != 0)
43 {
44 perror("bind() error\n");
45 close(skfd);
46 return -1;
47 }
48
49 memset(&daddr, 0, sizeof(daddr));
50 daddr.nl_family = AF_NETLINK;
51 daddr.nl_pid = 0; // to kernel
52 daddr.nl_groups = 0;
53
54 nlh = (struct nlmsghdr *)malloc(NLMSG_SPACE(MAX_PLOAD));
55 memset(nlh, 0, sizeof(struct nlmsghdr));
56 nlh->nlmsg_len = NLMSG_SPACE(MAX_PLOAD);
57 nlh->nlmsg_flags = 0;
58 nlh->nlmsg_type = 0;
59 nlh->nlmsg_seq = 0;
60 nlh->nlmsg_pid = saddr.nl_pid; //self port
61
62 memcpy(NLMSG_DATA(nlh), umsg, strlen(umsg));
63 ret = sendto(skfd, nlh, nlh->nlmsg_len, 0, (struct sockaddr *)&daddr, sizeof(struct sockaddr_nl));
64 if(!ret)
65 {
66 perror("sendto error\n");
67 close(skfd);
68 exit(-1);
69 }
70 printf("send kernel:%s\n", umsg);
71
72 memset(&u_info, 0, sizeof(u_info));
73 len = sizeof(struct sockaddr_nl);
74 ret = recvfrom(skfd, &u_info, sizeof(user_msg_info), 0, (struct sockaddr *)&daddr, &len);
75 if(!ret)
76 {
77 perror("recv form kernel error\n");
78 close(skfd);
79 exit(-1);
80 }
81
82 printf("from kernel:%s\n", u_info.msg);
83 close(skfd);
84
85 free((void *)nlh);
86 return 0;
87 }
Netlink 内核模块代码:
1 /****************************************
2 * Author: zhangwj
3 * Date: 2017-01-19
4 * Filename: netlink_test.c
5 * Descript: netlink of kernel
6 * Kernel: 3.10.0-327.22.2.el7.x86_64
7 * Warning:
8 ******************************************/
9
10 #include <linux/init.h>
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <net/sock.h>
14 #include <linux/netlink.h>
15
16 #define NETLINK_TEST 30
17 #define MSG_LEN 125
18 #define USER_PORT 100
19
20 MODULE_LICENSE("GPL");
21 MODULE_AUTHOR("zhangwj");
22 MODULE_DESCRIPTION("netlink example");
23
24 struct sock *nlsk = NULL;
25 extern struct net init_net;
26
27 int send_usrmsg(char *pbuf, uint16_t len)
28 {
29 struct sk_buff *nl_skb;
30 struct nlmsghdr *nlh;
31
32 int ret;
33
34 /* 创建sk_buff 空间 */
35 nl_skb = nlmsg_new(len, GFP_ATOMIC);
36 if(!nl_skb)
37 {
38 printk("netlink alloc failure\n");
39 return -1;
40 }
41
42 /* 设置netlink消息头部 */
43 nlh = nlmsg_put(nl_skb, 0, 0, NETLINK_TEST, len, 0);
44 if(nlh == NULL)
45 {
46 printk("nlmsg_put failaure \n");
47 nlmsg_free(nl_skb);
48 return -1;
49 }
50
51 /* 拷贝数据发送 */
52 memcpy(nlmsg_data(nlh), pbuf, len);
53 ret = netlink_unicast(nlsk, nl_skb, USER_PORT, MSG_DONTWAIT);
54
55 return ret;
56 }
57
58 static void netlink_rcv_msg(struct sk_buff *skb)
59 {
60 struct nlmsghdr *nlh = NULL;
61 char *umsg = NULL;
62 char *kmsg = "hello users!!!";
63
64 if(skb->len >= nlmsg_total_size(0))
65 {
66 nlh = nlmsg_hdr(skb);
67 umsg = NLMSG_DATA(nlh);
68 if(umsg)
69 {
70 printk("kernel recv from user: %s\n", umsg);
71 send_usrmsg(kmsg, strlen(kmsg));
72 }
73 }
74 }
75
76 struct netlink_kernel_cfg cfg = {
77 .input = netlink_rcv_msg, /* set recv callback */
78 };
79
80 int test_netlink_init(void)
81 {
82 /* create netlink socket */
83 nlsk = (struct sock *)netlink_kernel_create(&init_net, NETLINK_TEST, &cfg);
84 if(nlsk == NULL)
85 {
86 printk("netlink_kernel_create error !\n");
87 return -1;
88 }
89 printk("test_netlink_init\n");
90
91 return 0;
92 }
93
94 void test_netlink_exit(void)
95 {
96 if (nlsk){
97 netlink_kernel_release(nlsk); /* release ..*/
98 nlsk = NULL;
99 }
100 printk("test_netlink_exit!\n");
101 }
102
103 module_init(test_netlink_init);
104 module_exit(test_netlink_exit);
Makeflie:
1 #
2 #Desgin of Netlink
3 #
4
5 MODULE_NAME :=netlink_test
6 obj-m :=$(MODULE_NAME).o
7
8 KERNELDIR ?= /lib/modules/$(shell uname -r)/build
9 PWD := $(shell pwd)
10
11 all:
12 $(MAKE) -C $(KERNELDIR) M=$(PWD)
13
14 clean:
15 $(MAKE) -C $(KERNELDIR) M=$(PWD) clean
运行结果:
首先将编译出来的Netlink内核模块插入到系统当中(insmod netlink_test.ko)可以看到如下:
1 [root@localhost nt_2nd]# insmod netlink_test.ko
2 [root@localhost nt_2nd]# dmesg
3 [25024.276345] test_netlink_init
接着运行应用程序:./a.out
1 [root@localhost nt_2nd]# ./a.out
2 send kernel:hello netlink!!
3 from kernel:hello users!!!
4 [root@localhost nt_2nd]# dmesg
5 [25024.276345] test_netlink_init
6 [25117.548350] kernel recv from user: hello netlink!!
7 [root@localhost nt_2nd]#
Netlink通信机制【转】的更多相关文章
- linux netlink通信机制
一.什么是Netlink通信机制 Netlink套接字是用以实现用户进程与内核进程通信的一种特殊的进程间通信(IPC) ,也是网络应用程序与内核通信的最常用的接口. Netlink 是一种特殊的 s ...
- linux netlink通信机制简介
一.什么是Netlink通信机制 Netlink套接字是用以实现用户进程与内核进程通信的一种特殊的进程间通信(IPC) ,也是网络应用程序与内核通信的最常用的接口. Netlink 是一种特殊的 s ...
- NetLink通信机制学习
Netlink套接字是用以实现用户进程与内核进程通信的一种特殊的进程间通信(IPC) ,在 Linux 2.4 版以后版本的内核中,几乎全部的中断过程与用户态进程的通信都是使用 netlink 套接字 ...
- 1、netlink 连接器 通信机制
使用netlink之前,先参考一下资料:http://www.ibm.com/developerworks/cn/linux/l-connector/ netlink通信机制介绍:资料来源 linux ...
- netlink---Linux下基于socket的内核和上层通信机制 (转)
需要在linux网卡 驱动中加入一个自己的驱动,实现在内核态完成一些报文处理(这个过程可以实现一种零COPY的网络报文截获),对于复杂报文COPY下必要的数据交给用户 态来完成(因为过于复杂的报文消耗 ...
- NetLink通信原理研究、Netlink底层源码分析、以及基于Netlink_Connector套接字监控系统进程行为技术研究
1. Netlink简介 0x1:基本概念 Netlink是一个灵活,高效的”内核-用户态“.”内核-内核“.”用户态-用户态“通信机制.通过将复杂的消息拷贝和消息通知机制封装在统一的socket a ...
- .Net中Remoting通信机制简单实例
.Net中Remoting通信机制 前言: 本程序例子实现一个简单的Remoting通信案例 本程序采用语言:c# 编译工具:vs2013工程文件 编译环境:.net 4.0 程序模块: Test测试 ...
- .Net中Remoting通信机制
Remoting通信机制 Remoting介绍 主要元素 通道类型 激活方式 对象定义 Remoting介绍 什么是Remoting,简而言之,我们可以将其看作是一种分布式处理方式. 从微软的产品角度 ...
- 【单页应用之通信机制】view之间应该如何通信
前言 在单页应用中,view与view之间的通信机制一直是一个重点,因为单页应用的所有操作以及状态管理全部发生在一个页面上 没有很好的组织的话很容易就乱了,就算表面上看起来没有问题,事实上会有各种隐忧 ...
随机推荐
- iOS App Crash原理分析
预备知识:OS X系统分析 1.内核XNU是Darwin的核心,也是整个OS X的核心.XNU本身由以下几个组件构成: Mach微核心 BSD层 libKern I/O Kit 此外,内核是模块化的, ...
- CAD由一个自定义实体事件中的id得到自定义实体对象(com接口VB语言)
由一个自定义实体事件中的id得到自定义实体对象.该函数只能在自定义实体事件中调用. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2 ...
- CAD得到布局名
js代码如下: var database = mxOcx.GetDatabase(); var sRet = null; //返回数据库中的布局字典 var spLayoutDictionary = ...
- 01Microsoft SQL Server
Microsoft SQL Server Microsoft SQL Server 是Microsoft 公司推出的关系型数据库管理系统.具有使用方便可伸缩性好与相关软件集成程度高等优点,可跨越膝上型 ...
- A2. JVM 类加载机制
[概述] 虚拟机把描述类的数据从 Class 文件加载到内存,并对数据进行校验.转换解析和初始化,最终形成可以被虚拟机直接使用的 Java 类型,这就是虚拟机的类加载机制. 与那些在编译时需要进行连接 ...
- Python之IO编程
前言:由于程序和运行数据是在内存中驻留的,由CPU这个超快的计算核心来执行.当涉及到数据交换的地方,通常是磁盘.网络等,就需要IO接口.由于CPU和内存的速度远远高于外设的速度,那么在IO编程中就存在 ...
- mysql外键是多个id组成的字符串,查询方法
借鉴:mysql使用instr达到in(字符串)的效果 结论:select * from 表名where INSTR(CONCAT(字符串),CONCAT(表id)) 问题来源:一表中的某字段是另一表 ...
- Ubuntu---vim配置
1. Linux g++开启C++11支持 1.1 使用vim打开.bashrc文件 sudo vim ~/.bashrc 1.2 在some more ls aliases注释块的地方添加: ali ...
- 解决ASP.NET Core部署到IIS,更新项目"另一个程序正在使用此文件,进程无法访问"
问题:部署到IIS上的ASP.NET Core项目,在更新的时候会进程占用的错误 初步解决方案: 1,关闭应用程序池 2,关闭网站 3,更新项目 缺点:网站没法访问,部署项目停的时间过长 查询官方文档 ...
- MySql join匹配原理
疑问 表:sl_sales_bill_head 订单抬头表 数据行:8474 表:sl_sales_bill 订单明细 数据行:8839 字段:SALES_BILL_NO 订单号 情 ...