首先建立矩阵,给每个格子编号,然后在4*4的格子中把能一步走到的格子置为1,然后乘n次即可,这里要用到矩阵快速幂

#include<iostream>
#include<cstdio>
using namespace std;
const int mod=1e9+7;
long long n,ans;
struct qwe
{
long long a[5][5];
qwe operator * (qwe b)
{
qwe c;
for(long long i=1;i<=4;i++)
for(long long j=1;j<=4;j++)
c.a[i][j]=0;
for(long long k=1;k<=4;k++)
for(long long i=1;i<=4;i++)
for(long long j=1;j<=4;j++)
c.a[i][j]=(c.a[i][j]+a[i][k]*b.a[k][j])%mod;
return c;
}
}a,r;
int main()
{
scanf("%lld",&n);
for(long long i=1;i<=4;i++)
for(long long j=1;j<=4;j++)
a.a[i][j]=1;
a.a[1][4]=0,a.a[2][3]=0,a.a[3][2]=0,a.a[4][1]=0;
for(long long i=1;i<=4;i++)
r.a[i][i]=1;
while(n)
{
if(n&1)
r=r*a;
a=a*a;
n>>=1;
}
for(long long i1=1;i1<=4;i1++)
for(long long i2=1;i2<=4;i2++)
if(i2!=i1)
for(long long i3=1;i3<=4;i3++)
if(i3!=i1&&i3!=i2)
for(long long i4=1;i4<=4;i4++)
if(i4!=i1&&i4!=i2&&i4!=i3)
ans=(ans+r.a[1][i1]*r.a[2][i2]%mod*r.a[3][i3]%mod*r.a[4][i4]%mod)%mod;
printf("%lld\n",ans);
return 0;
}

51nod 1122 机器人走方格 V4 【矩阵快速幂】的更多相关文章

  1. 51nod 1122:机器人走方格 V4 (矩阵快速幂)

    题目链接 昨天上随机信号分析讲马氏链的时候突然想到这题的解法,今天写一下 定义矩阵A,Ans=A^n,令A[i][j]表示,经过1次变换后,第i个位置上的机器人位于第j个位置的情况数,则Ans[i][ ...

  2. 1122 机器人走方格 V4

    1122 机器人走方格 V4 基准时间限制:1 秒 空间限制:131072 KB  四个机器人a b c d,在2 * 2的方格里,一开始四个机器人分别站在4个格子上,每一步机器人可以往临近的一个格子 ...

  3. 51nod1122 机器人走方格 V4

    矩阵快速幂求出每个点走n步后到某个点的方案数.然后暴力枚举即可 #include<cstdio> #include<cstring> #include<cctype> ...

  4. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  5. 51nod 1119 机器人走方格 V2

    1119 机器人走方格 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少 ...

  6. 51nod 1120 机器人走方格V3

    1120 机器人走方格 V3  基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只 ...

  7. 51Nod 1118 机器人走方格--求逆元

    (x/y) %mod =x*(y^(mod-2))%mod; 在算x,y的时候可以一直mod 来缩小 y^(mod-2)显然是个快速幂 #include <iostream> #inclu ...

  8. 51nod_1122:机器人走方格 V4 (矩阵快速幂)

    题目链接 昨天上随机信号分析讲马氏链的时候突然想到这题的解法,今天写一下 定义矩阵A,Ans=A^n,令A[i][j]表示,经过1次变换后,第i个位置上的机器人位于第j个位置的情况数,则Ans[i][ ...

  9. 51Nod——N1118 机器人走方格

    https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1118 基准时间限制:1 秒 空间限制:131072 KB 分值: 0  ...

随机推荐

  1. Scala入门到精通——第二十四节 高级类型 (三)

    作者:摆摆少年梦 视频地址:http://blog.csdn.net/wsscy2004/article/details/38440247 本节主要内容 Type Specialization Man ...

  2. cocoapods应用第一部分-xcode创建.framework相关

    问题的提出: 随着项目的越来越大,可能会出现好几个团队共同维护一个项目的情况,比如:项目组A负责当中的A块,项目组B负责当中的B块.....这几块彼此之间既独立,也相互联系.对于这样的情况,能够採用约 ...

  3. XP 系统如何安装.NET Framework4.0

    1 运行CMD,然后输入命令net stop WuAuServ   2 打开C盘的Windows目录,然后找到SoftwareDistribution文件夹改名为SDold.   3 在CMD窗口中输 ...

  4. android 自己定义水平和圆形progressbar 仅仅定义一些style就能够

    效果图: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/diss ...

  5. hdu5399Too Simple

    //给m个函数 //其相应是自变量x属于{1,2,...n} //f(x)属于{1,2...3} //给出当中一些函数,问有多少种不同的函数集合使得 //1<=i<=n f1(f2(f3. ...

  6. Nginx在Linux下的安装部署

    Nginx简单介绍 Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 server,也是一个 IMAP/POP3/SMTP server.Nginx作为 ...

  7. NOI 2015 滞后赛解题报告

    报同步赛的时候出了些意外.于是仅仅能做一做"滞后赛"了2333 DAY1 T1离线+离散化搞,对于相等的部分直接并查集,不等部分查看是否在同一并查集中就可以,code: #incl ...

  8. 1.5.4 HAVING子句

    1.5.4 HAVING子句正在更新内容.请稍后

  9. ImageLoader实现图片异步载入

    ImageLoader是一个广泛使用的图片库,在向网络请求图片时.使用imageView和smartView常会产生outofmemory错误,这时ImageLoader能够起到非常大的作用.主要有例 ...

  10. GEO,IGSO,MEO,LEO

    GEO(Geosynchronous Eearth Orbit):地球静止轨道卫星 IGSO(Inclined Geosynchronous Satellite Orbit):倾斜轨道同步卫星 地球同 ...