参考:https://www.cnblogs.com/kuangbin/p/3537525.html

这篇讲的挺好的

首先分清欧拉路和欧拉环:

欧拉路:图中经过每条边一次且仅一次的路径,要求只有两个点的出入度之差为奇数,这两个点即为欧拉路的起点和终点

欧拉环:图中经过每条边一次且仅一次的环,要求全部点的出入度之差为偶数

这道题中要判定的是欧拉路。首先看是否满足“只有两个点的出入度之差为奇数”这个条件,可以发现尽管有没有定向的边,但是出入的之差的奇偶是不变的;假设一条从i出发的边变向为到达i,那么点i的入度+1出度-1,差的奇偶性不变。

判定可以用网络流来做:s向所有差>0的点连流量为差/2的边,所有差<0的边向t连流量为差/2的边。对于原有的双向边随便定个向,连流量为1的边,意味着只能改一次方向。

然后跑最大流,最后看是否所有与s相连的边都满流。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=100005,inf=1e9;
int T,n,m,h[N],cnt,le[N],in[N],out[N],s,t;
struct qwe
{
int ne,to,v;
}e[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].v=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{
add(u,v,w);
add(v,u,0);
}
int bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(!le[e[i].to]&&e[i].v>0)
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(!f||u==t)
return f;
int us=0;
for(int i=h[u];i;i=e[i].ne)
if(le[u]+1==le[e[i].to]&&e[i].v>0)
{
int t=dfs(e[i].to,min(e[i].v,f-us));
e[i].v-=t;
e[i^1].v+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
void dinic()
{
int re=0;
while(bfs())
dfs(s,inf);
}
int main()
{
T=read();
while(T--)
{
n=read(),m=read();
s=0,t=n+1;
cnt=1;
memset(h,0,sizeof(h));
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
for(int i=1;i<=m;i++)
{
int x=read(),y=read(),z=read();
out[x]++,in[y]++;
if(z==0)
ins(x,y,1);
}
bool f=1;
for(int i=1;i<=n;i++)
{
if((out[i]-in[i])%2==1)
{
f=0;
break;
}
if(out[i]-in[i]>0)
ins(s,i,(out[i]-in[i])/2);
else if(out[i]-in[i]<0)
ins(i,t,(in[i]-out[i])/2);
}
if(!f)
{
puts("impossible");
continue;
}
dinic();
for(int i=h[s];i;i=e[i].ne)
if(e[i].v!=0)
{
f=0;
break;
}
if(!f)
puts("impossible");
else
puts("possible");
}
return 0;
}

poj 1637 Sightseeing tour【最大流+欧拉路】的更多相关文章

  1. POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]

    嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...

  2. poj 1637 Sightseeing tour——最大流+欧拉回路

    题目:http://poj.org/problem?id=1637 先给无向边随便定向,如果一个点的入度大于出度,就从源点向它连 ( 入度 - 出度 / 2 ) 容量的边,意为需要流出去这么多:流出去 ...

  3. poj 1637 Sightseeing tour —— 最大流+欧拉回路

    题目:http://poj.org/problem?id=1637 建图很妙: 先给无向边随便定向,这样会有一些点的入度不等于出度: 如果入度和出度的差值不是偶数,也就是说这个点的总度数是奇数,那么一 ...

  4. POJ 1637 Sightseeing tour(最大流)

    POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.n ...

  5. POJ 1637 Sightseeing tour (混合图欧拉路判定)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 ...

  6. 网络流(最大流) POJ 1637 Sightseeing tour

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8628   Accepted: 3636 ...

  7. POJ 1637 Sightseeing tour

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9276   Accepted: 3924 ...

  8. POJ 1637 Sightseeing tour (SAP | Dinic 混合欧拉图的判断)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6448   Accepted: 2654 ...

  9. POJ 1637 Sightseeing tour (混合图欧拉回路)

    Sightseeing tour   Description The city executive board in Lund wants to construct a sightseeing tou ...

随机推荐

  1. Codeforces 920E(补图BFS)

    题意: n(n<=200000)个点的完全图删去了m(m<=200000)条边,求剩下图的连通分量. 分析: 将未访问过的点用一个链表串起来 仍旧进行BFS,每次BFS扩展一个点u的时候, ...

  2. MySQL命令行自动补全表名

    注意:在命令行下只有切换到数据库之后,才能补全表名,对于命令是不能补全的. 1.my.conf增加如下配置: [mysql] #no-auto-rehash auto-rehash #添加auto-r ...

  3. Java中的重写

    以下内容引用自http://wiki.jikexueyuan.com/project/java/overriding.html: 如果一个类从它的父类继承了一个方法,如果这个方法没有被标记为final ...

  4. iOS: 解决Asset Catalog Compile Error - TDDIstiller instance can only be distilled only one time的错误

    执行命令:rm -rf /Users/<用户名>/Library/Developer/Xcode/DerivedData 然后重新编译项目即可.

  5. atomic原子操作

    C++中对共享数据的存取在并发条件下可能会引起data race的未定义行为,需要限制并发程序以某种特定的顺序执行,有两种方式:1.使用mutex保护共享数据: 2.原子操作 原子操作:针对原子类型操 ...

  6. HadoopMapReduce运行机制

    1.map方法读取一个文件的一行记录进行分析,  输入:LongWritable(当前读取的文件位置), Text(内容) 2.map将读取到的信息进行分类,输入Context  (键值对)  ;作为 ...

  7. spring理解一

    spring基本工作原理例如以下: 1.查找bean配置文件 2.载入bean配置文件并解析生成中间表示BeanDefinition 3.注冊beanDefinition 4.假设是单例或lazy-i ...

  8. LoadRunner 中调用c函数生成随机字符串

    Action() { int itera_num,rand_num,i; ]=""; char StrTable[]="abcdefghijklmnopqrstuvwxy ...

  9. Tcl学习之--列表|字典

    [列表|字典] Tcl使用列表来处理各种集合,比方一个目录中的全部文件,以及一个组件的全部选项.最简单的列表就是包括由随意个空格.制表符.换行符.分隔的随意多个元素的字符串.比方: JerryAlic ...

  10. 一个有意思的Ruby Webdriver超时问题的解决过程

    rescue in receive 由于写ruby的时候感觉混身上下都拽起来了,所以比較喜欢用ruby写代码. 今天遇到了一个webdriver timeout的问题,问题本身还是由于我对webdri ...