概述

  常见的垃圾回收算法有:标记-清除算法、复制算法、标记-整理算法、分代收集算法。

标记-清除算法

  标记-清除算法是最基础的收集算法,如同它的名字一样,算法分为 “标记” 和 “清除” 两个阶段:首先标记出所有需要回收的对象,在标记完成之后统一回收所有被标记的对象,这里的标记采用的是 “可达性分析算法”。之所以说它是最基础的收集算法,是因为后续的收集算法都是基于这种思路并对其不足进行改进而得到的。它的不足主要有两个:一个是效率问题,标记和清除两个过程的效率都不高;另一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

复制算法

  为了解决效率问题,一种称为 “复制”(Copying)的收集算法出现了,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对整个半区进行内存回收,内存分配也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为原来的一半,代价太高了一点。

  现在的商业虚拟机都采用这种收集算法来回收新生代,IBM 公司的专门研究报告表明,新生代中的对象 98% 是 “朝生夕死” 的,所以并不需要按照1:1的比例来划分内存空间,而是将内存分为一块较大的 Eden 空间和两块较小的 Survivor 空间。当回收时,将 Eden 区和 Survivor From 区中还存活的对象一次性地复制到 Survivor To 区,然后清除 Eden 区和 Survivor From 区的全部空间,最后Survivor From 和 Survivor To 的逻辑指向互换,即 Survivor From 指向保留存活对象的 Survivor To 区,Survivor To 指向已被清空的 Survivor From 区,以此类推。HotSpot 虚拟机默认 Eden 和 Survivor 的大小比例为 8:1,也就是每次新生代中可用内存空间为整个新生代容量的 90%(80%+10%),只有 10% 的内存会被 “浪费”。当然,98% 的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有不多于 10%的对象存活,当 Survivor 空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。

  内存的分配担保就好比我们去银行贷款,如果我们信誉很好,在 98% 的情况下都能按时偿还,于是银行可能会默认我们下一次也能按时按量地偿还贷款,只需要一个担保人能保证如果我不能还款时,可以从他的账户扣钱,那银行就认为没有风险了。内存的分配担保也一样,如果另外一块 Survivor 空间(逻辑上一般指 Survivor To 区)没有足够空间存放上一次新生代垃圾收集的存活对象时,这些对象将直接通过分配担保机制进入老年代。

标记-整理算法

  复制收集算法在对象存活率较高时就要进行较多的复制操作,效率将会变低。更关键的是,如果不想浪费 50% 的空间,就需要有额外空间进行分配担保,以应对被使用的内存中所有对象都 100% 存活的极端情况,所以在老年代一般不能直接选用这种算法。

  根据老年代的特点,有人提出另外一种 “标记-整理” 算法,标记过程仍然与 “标记-清除” 算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后清理掉端边界以外的内存。

分代收集算法

  当前商业虚拟机的垃圾收集都采用 “分代收集” 算法,这种算法并没有什么新的思想,只是根据对象存活周期的不同将内存划分为几块。一般是把 Java 堆划分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现由大批的对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、并没有额外空间对它进行分配担保,就必须使用 “标记-清除” 或者 “标记-整理” 算法来进行回收。

A6. JVM 垃圾回收算法(GC 算法)的更多相关文章

  1. JVM垃圾回收(GC)

    JVM垃圾回收(GC) 1. 判断对象是否可以被回收 引用计数法:每个对象有一个引用计数属性,新增一个引用时计数加1,引用释放时计数减1,计数为0时可以回收.此方法简单,但无法解决对象相互循环引用的问 ...

  2. JVM垃圾回收机制GC

    1. 垃圾回收的意义 在C++中,对象所占的内存在程序结束运行之前一直被占用,在明确释放之前不能分配给其它对象:而在Java中,当没有对象引用指向原先分配给某个对象的内存时,该内存便成为垃圾.JVM的 ...

  3. Java:JVM垃圾回收(GC)机制

    JVM垃圾回收算法 1.标记清除(Mark-Sweep) 原理: 从根集合节点进行扫描,标记出所有的存活对象,最后扫描整个内存空间并清除没有标记的对象(即死亡对象)适用场合: 存活对象较多的情况下比较 ...

  4. JVM 垃圾回收(GC)机制

    目录 一.背景 二. 哪些内存需要回收? 1.引用计数算法 2 .可达性分析算法 三. 四种引用状态 1.强引用 2.软引用 3.弱引用 4.虚引用 对象死亡(被回收)前的最后一次挣扎 方法区如何判断 ...

  5. jvm 垃圾回收机制和算法(转)

    stop-the-world 在学习Java GC 之前,我们需要记住一个单词:stop-the-world .它会在任何一种GC算法中发生.stop-the-world 意味着JVM因为需要执行GC ...

  6. jvm 垃圾回收概念和算法

    1.概念 GC 中的垃圾,特指存在于内存中.不会再被使用的对象.垃圾回收有很多种算法,如引用计数法.复制算法.分代.分区的思想. 2.算法 1.引用计数法:对象被其他所引用时计数器加 1,而当引用失效 ...

  7. JVM垃圾回收(GC)原理

    一.基本垃圾回收算法 1.引用计数(Reference Counting) 比较古老的回收算法.原理是此对象有一个引用则增加一个引用计数,删除一个引用则较少一个引用计数.垃圾回收时,只回收引用计数为0 ...

  8. JVM垃圾回收(GC)整理总结学习

    基本回收算法 1. 引用计数(Reference Counting)比较古老的回收算法.原理是此对象有一个引用,即增加一个计数,删除一个引用则减少一个计数.垃圾回收时,只用收集计数为0的对象.此算法最 ...

  9. JVM——垃圾回收(GC)

    GC简单介绍 java语言执行在java虚拟机(jvm)上.为了解决有限的空间和性能的保证这个矛盾体,jvm所具备的GC能力.能够有效的清除不用的对象.使空间的利用更加合理.以下介绍该机制的原理. 推 ...

随机推荐

  1. 图像处理之基础---滤波器之高斯低通滤波器的高斯模板生成c实现

    ()代码实现 对原图进行高斯平滑,去除图像中的计算噪声void Bmp::MakeGauss(double sigma,double **pdKernel,int *pnWindowSize){ // ...

  2. iOS开发——高级篇——iOS中为什么block用copy属性

    1. Block的声明和线程安全Block属性的声明,首先需要用copy修饰符,因为只有copy后的Block才会在堆中,栈中的Block的生命周期是和栈绑定的,可以参考之前的文章(iOS: 非ARC ...

  3. python包格式

    1 egg和wheel 前者扩展名是.egg,后者扩展名是.whl 它们都是python的模块.后者用来替换前者. wheel是轮子的意思,就是说,有了.whl包就不需要重新再造轮子了.

  4. XMU 1125 越野车大赛 【三分】

    1125: 越野车大赛 Time Limit: 500 MS  Memory Limit: 64 MB  Special JudgeSubmit: 8  Solved: 4[Submit][Statu ...

  5. ARM+llinux系统移植3G拨号上网收发短信(二)【转】

    本文转载自:http://blog.csdn.net/hanmengaidudu/article/details/17099749 一.发送text格式的短信 给联通发text格式的短信: ~ > ...

  6. luence全文检索(数据库检索)

    注解:从数据库中查询所有数据然后放入luence中,然后在luence来检索 package com.zhu.demo; import java.io.IOException; import java ...

  7. 在MAC端查看win7

    在MAC端查看win7,在finder中打开网络,输入win7地址,填入用户名和密码,就可以了

  8. 第十三周 Leetcode 363. Max Sum of Rectangle No Larger Than K(HARD)

    Leetcode363 思路: 一种naive的算法就是枚举每个矩形块, 时间复杂度为O((mn)^2), 可以做少许优化时间复杂度可以降低到O(mnnlogm), 其中m为行数, n为列数. 先求出 ...

  9. P4556 [Vani有约会]雨天的尾巴(线段树合并)

    传送门 一道线段树合并 首先不难看出树上差分 我们把每一次修改拆成四个,在\(u,v\)分别放上一个,在\(lca\)和\(fa[lca]\)各减去一个,那么只要统计一下子树里的总数即可 然而问题就在 ...

  10. nginx的负载均衡的问题

    本节就聊聊采用Nginx负载均衡之后碰到的问题: Session问题 文件上传下载 通常解决服务器负载问题,都会通过多服务器分载来解决.常见的解决方案有: 网站入口通过分站链接负载(天空软件站,华军软 ...