Problem 1: Cow Calisthenics [Michael Cohen, 2010]

Farmer John continues his never-ending quest to keep the cows fit
by having them exercise on various cow paths that run through the
pastures. These cow paths can be represented as a set of vertices
connected with bidirectional edges so that each pair of vertices
has exactly one simple path between them. In the abstract, their
layout bears a remarkable resemblance to a tree. Surprisingly, each
edge (as it winds its way through the pastures) has the same length. For any given set of cow paths, the canny cows calculate the longest
possible distance between any pair of vertices on the set of cowpaths
and call it the pathlength. If they think this pathlength is too
large, they simply refuse to exercise at all. Farmer John has mapped the paths and found V (2 <= V <= 100,000)
vertices, conveniently numbered from 1..V. In order to make shorter
cowpaths, he can block the path between any two vertices, thus
creating more sets of cow paths while reducing the pathlength of
both cowpath sets. Starting from a single completely connected set of paths (which
have the properties of a tree), FJ can block S (1 <= S <= V-1)
paths, creating S+1 sets of paths. Your goal is to compute the best
paths he can create so that the largest pathlength of all those
sets is minimized. Farmer John has a list of all V-1 edges in his tree, each described
by the two vertices A_i (1 <= A_i <= V) and B_i (1 <= B_i <= V; A_i
!= B_i) that it connects. Consider this rather linear cowpath set (a tree with 7 vertices): 1---2---3---4---5---6---7 If FJ can block two paths, he might choose them to make a map like
this:
1---2 | 3---4 | 5---6---7 where the longest pathlength is 2, which would be the answer in
this case. He can do no better than this. TIME LIMIT: 2 seconds MEMORY LIMIT: 32 MB PROBLEM NAME: exercise INPUT FORMAT: * Line 1: Two space separated integers: V and S * Lines 2..V: Two space separated integers: A_i and B_i SAMPLE INPUT (file exercise.in): 7 2
6 7
3 4
6 5
1 2
3 2
4 5 OUTPUT FORMAT: * Line 1: A single integer that is the best maximum pathlength FJ can
achieve with S blocks SAMPLE OUTPUT (file exercise.out): 2

不懂英文自行解决。。。

一看到最大值最小,就是二分,可是想了半天也没想出来如何check。看了题解,恍然大悟。

随便选一个根拉成一棵树,然后对于以r为根的子树,假设以其儿子节点为根的子树中该断的边已经断了,那么对于以r为根的子树中,其直径为“最深”的两个儿子i与j的深度之和 + 2,“最深”的意思是,以这两个节点往下走能走的最深。如果这个值大于二分的那个最大值,则最深的那个儿子就要断开与r的连接,这样直到“最深”的两个儿子i与j的深度之和 + 2 <= 二分的最大值。当有一个节点时同理,反正剩下就是细节了。

#include <cstdio>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <algorithm> const int maxn = 100005; int n, s, t1, t2, ans_s, root, biaozhun;
int head[maxn], to[maxn << 1], next[maxn << 1], lb;
std::vector<int> son[maxn]; inline void ist(int aa, int ss) {
to[lb] = ss;
next[lb] = head[aa];
head[aa] = lb;
++lb;
}
bool cmp(int aa, int ss) {
return aa > ss;
}
int dfs(int r, int p) {
for (int j = head[r]; j != -1; j = next[j]) {
if (to[j] != p) {
son[r].push_back(dfs(to[j], r));
}
}
std::sort(son[r].begin(), son[r].end(), cmp);
if (son[r].size() > 1) {
int lmt = son[r].size();
int i;
for (i = 0; i < lmt - 1; ++i) {
if (son[r][i] + son[r][i + 1] + 2 <= biaozhun) {
break;
}
++ans_s;
}
if (i == lmt - 1) {
if (son[r][i] + 1 > biaozhun) {
++ans_s;
return 0;
}
else {
return son[r][i] + 1;
}
}
else {
return son[r][i] + 1;
}
}
else if (son[r].size() == 1) {
if (son[r][0] + 1 > biaozhun) {
++ans_s;
return 0;
}
else {
return son[r][0] + 1;
}
}
else {
return 0;
}
}
inline bool check(int mx) {
ans_s = 0;
biaozhun = mx;
for (int i = 1; i <= n; ++i) {
son[i].clear();
}
dfs(root, 0);
return ans_s <= s;
} int main(void) {
freopen("exercise.in", "r", stdin);
freopen("exercise.out", "w", stdout);
memset(head, -1, sizeof head);
memset(next, -1, sizeof next);
unsigned seed;
scanf("%d%d", &n, &s);
seed += n + s;
for (int i = 1; i < n; ++i) {
scanf("%d%d", &t1, &t2);
seed += t1 + t2;
ist(t1, t2);
ist(t2, t1);
}
srand(seed);
root = rand() % n + 1; int left = 0, right = n, mid;
while (left != right) {
mid = (left + right) >> 1;
if (check(mid)) {
right = mid;
}
else {
left = mid + 1;
}
}
printf("%d\n", left);
return 0;
}

  

[USACO 2011 Dec Gold] Cow Calisthenics【二分】的更多相关文章

  1. [USACO 2011 Nov Gold] Cow Steeplechase【二分图】

    传送门:http://www.usaco.org/index.php?page=viewproblem2&cpid=93 很容易发现,这是一个二分图的模型.竖直线是X集,水平线是Y集,若某条竖 ...

  2. [USACO 2011 Dec Gold] Threatening Letter【后缀】

    Problem 3: Threatening Letter [J. Kuipers, 2002] FJ has had a terrible fight with his neighbor and w ...

  3. [USACO 2017 Dec Gold] Tutorial

    Link: USACO 2017 Dec Gold 传送门 A: 为了保证复杂度明显是从终结点往回退 结果一开始全在想优化建边$dfs$……其实可以不用建边直接$multiset$找可行边跑$bfs$ ...

  4. BZOJ1774[USACO 2009 Dec Gold 2.Cow Toll Paths]——floyd

    题目描述 跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费 ...

  5. Usaco 2010 Dec Gold Exercise(奶牛健美操)

    /*codevs 3279 二分+dfs贪心检验 堆版本 re一个 爆栈了*/ #include<cstdio> #include<queue> #include<cst ...

  6. [USACO 2012 Feb Gold] Cow Coupons【贪心 堆】

    传送门1:http://www.usaco.org/index.php?page=viewproblem2&cpid=118 传送门2:http://www.lydsy.com/JudgeOn ...

  7. [USACO 2011 Nov Gold] Above the Median【逆序对】

    传送门:http://www.usaco.org/index.php?page=viewproblem2&cpid=91 这一题我很快的想出了,把>= x的值改为1,< x的改为- ...

  8. bzoj2581 [USACO 2012 Jan Gold] Cow Run【And-Or Tree】

    传送门1:http://www.usaco.org/index.php?page=viewproblem2&cpid=110 传送门2:http://www.lydsy.com/JudgeOn ...

  9. USACO 2011 February Silver Cow Line /// 康拓展开模板题 oj22713

    题目大意: 输入n k,1-n的排列,k次操作 操作P:输入一个m 输出第m个排列 操作Q:输入一个排列 输出它是第几个排列 Sample Input 5 2P3Q1 2 5 3 4 Sample O ...

随机推荐

  1. 读书笔记-HBase in Action-第三部分应用-(2)GIS系统

    本章介绍用HBase存储.高效查询地理位置信息. Geohash空间索引 考虑LBS应用中常见的两个问题:1)查找离某地近期的k个地点.2)查找某区域内地点. 假设要用HBase实现高效查找,首先要考 ...

  2. vux tabbar 组件

    1.App.vue <!-- 入口文件 --> <template> <div id="app"> <!-- 视图层 --> < ...

  3. 自己定义验证器——用Struts2框架以框架师的思维灵活做好该事情

    面对的问题:自己定义一个18位身份验证器.编写验证器.在validators.xml文件里进行注冊.在验证配置文件里使用? 第一部分:理解Struts2中自带的验证器 第二部分:如何通过server( ...

  4. Linux文件系统与磁盘管理

    Linux文件系统与磁盘管理 有哪些文件系统: FAT:微软在Dos/Windows系列操作系统中共使用的一种文件系统的总称.       exFAT(Extended File Allocation ...

  5. ASP.NET MVC3 自定义编辑模版

    在View中显示Model中的各字段,默认是使用htmlhelper的EditorFor方法,在界面上显示的文本框.而使用EditorTemplates可在View上为特定字段显示自定义的界面.比如购 ...

  6. setTimeout不可靠的修正办法及clearTimeout

    javascript里的这两个定时器函数,大家一定耳熟能详: setTimeout("函数()",毫秒)就是开启一个计时器,指定毫秒后执行该函数一次. 有关定时器,javascri ...

  7. 优化tomcat配置(从内存、并发、缓存)优化

    一.Tomcat内存优化 ** Tomcat内存优化主要是对 tomcat 启动参数优化,我们可以在 tomcat 的启动脚本 catalina.sh 中设置 java_OPTS 参数. JAVA_O ...

  8. SSH三大框架整合配置详细步骤(2)

    4 配置Hibernate Hibernate MySql连接配置 在Hibernate中,可以配置很多种数据库,例如MySql.Sql Server和Oracle,Hibernate MySql连接 ...

  9. 借助ltp语义分析提取特征,之后,文本生成

    """地点-哪里有做-业务-的(正规|靠谱)-公司?地点-做-业务-的(正规|靠谱)-公司(有哪些?|的联系方式是什么?|哪家口碑好值得信赖?)地点-做-业务-(怎么能省 ...

  10. Spring简单实现数据源的动态切换

    Spring简单实现数据源的动态切换: 1. 创建一个数据源切换类: 2. 继承AbstractRoutingDataSource,创建多数据源路由类,并注入到spring的配置文件中: 3. AOP ...