hdu3078 建层次树+在线LCA算法+排序
题意:n个点,n-1条边构成无向树,每个节点有权,Q次询问,每次或问从a->b的最短路中,权第k大的值,/或者更新节点a的权,
思路:在线LCA,先dfs生成树0,标记出层数和fa[](每个节点的父亲节点)。在对每次询问,走一遍一次公共祖先路上
的权,保持,快排。n*logn*q
#include<iostream> //187MS
#include<algorithm>
#include<cstdio>
#include<vector>
using namespace std;
int n,q;
int w[90000];
vector<vector<int> >e(160100);
int lev[80010];int vis[80010];
int fa[80010];
void dfs_getlev(int u) //dfs
{
for(int i=0;i<e[u].size();i++)
{
int v=e[u][i];
if(!vis[v])
{
vis[v]=1;
lev[v]=lev[u]+1;
fa[v]=u;
dfs_getlev(v);
}
}
}
bool my(int a,int b)
{
return a>b;
}
int find_lca(int k,int a,int b) //在线lca,按层次向上走。
{
vector<int> ans;
if(lev[a]>lev[b])
{
int temp=a;a=b;b=temp;
}
while(lev[b]>lev[a])
{
ans.push_back(w[b]);
b=fa[b];
}
while(a!=b)
{
ans.push_back(w[b]);
ans.push_back(w[a]);
a=fa[a];
b=fa[b];
}
ans.push_back(w[b]);
if(k>ans.size()) return -1;
sort(ans.begin(),ans.end(),my);
return ans[k-1];
}
int main()
{
cin>>n>>q;
for(int i=1;i<=n;i++)
scanf("%d",&w[i]);
int ta,tb;
for(int i=0;i<n-1;i++)
{
scanf("%d%d",&ta,&tb);
e[ta].push_back(tb);
e[tb].push_back(ta);
}
vis[1]=lev[1]=1;
dfs_getlev(1);
int k,a,b;
while(q--)
{
scanf("%d%d%d",&k,&a,&b);
if(k>0)
{
int anss =find_lca(k,a,b);
if(anss!=-1)
printf("%d\n",anss);
else
printf("invalid request!\n");
}
else
{
w[a]=b;
}
}
return 0;
}
hdu3078 建层次树+在线LCA算法+排序的更多相关文章
- HDU 5266 pog loves szh III (线段树+在线LCA转RMQ)
题目地址:HDU 5266 这题用转RMQ求LCA的方法来做的很easy,仅仅须要找到l-r区间内的dfs序最大的和最小的就能够.那么用线段树或者RMQ维护一下区间最值就能够了.然后就是找dfs序最大 ...
- 每日算法——新型在线LCA
在线LCA一般大家都会用倍增吧,时间复杂度O(nlogn),空间复杂度O(nlogn),都是非常严格的复杂度限制,并且各种边界处理比较麻烦,有没有更快更好的办法呢? 我们发现,在树链剖分时,我们不经意 ...
- LCA算法
LCA算法: LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点.也就是说,在两个点通往根的道路上,肯定会有公共的节点,我们就是要求找到公共 ...
- LCA算法总结
LCA问题(Least Common Ancestors,最近公共祖先问题),是指给定一棵有根树T,给出若干个查询LCA(u, v)(通常查询数量较大),每次求树T中两个顶点u和v的最近公共祖先,即找 ...
- 【图论】tarjan的离线LCA算法
百度百科 Definition&Solution 对于求树上\(u\)和\(v\)两点的LCA,使用在线倍增可以做到\(O(nlogn)\)的复杂度.在NOIP这种毒瘤卡常比赛中,为了代码的效 ...
- js 数组排序和算法排序
1.算法排序 a.插入排序 var arr = [23,34,3,4,23,44,333,444]; var arrShow = (function insertionSort(array){ if( ...
- bzoj 4448 [Scoi2015]情报传递(主席树,LCA)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4448 [题意] 给定一颗树,询问一条路径上权值小于t-c的点数. [思路] 将一个2查 ...
- js算法排序
一.选择算法排序(算法时间复杂度为O(n²)级别) 选择排序就是选择数组中的最小的树,依次排序.第一次选择最小的数放在第一位,第二次从剩余的元素中寻找最小的元素放在第二位,第三次在剩余的数中选择最小的 ...
- HDU 5266 pog loves szh III 线段树,lca
Pog and Szh are playing games. Firstly Pog draw a tree on the paper. Here we define 1 as the root of ...
随机推荐
- robotframe处理日志中文问题
unicode('${addr1.text}',"utf-8")
- hrbust-1545-基础数据结构——顺序表(2)
http://acm.hrbust.edu.cn/index.php?m=ProblemSet&a=showProblem&problem_id=1545 基础数据结构——顺序表(2) ...
- springboot-i18n国际化
简介 In computing, internationalization and localization are means of adapting computer software to di ...
- js获取主机名实现页面跳转
<script language="javascript" type="text/javascript"> var hostname ...
- Spring Boot + Mybatis + Druid 动态切换多数据源
在大型应用程序中,配置主从数据库并使用读写分离是常见的设计模式. 在Spring应用程序中,要实现读写分离,最好不要对现有代码进行改动,而是在底层透明地支持. 这样,就需要我们再一个项目中,配置两个, ...
- 文件操作-cd
cd命令是linux实际使用当中另一个非常重要的命令,本文就为大家介绍下Linux中cd命令的用法. 转载自 https://www.cnblogs.com/waitig/p/5880719.html ...
- rz
Linux系统简单易用的上传下载命令rz和sz sudo yum install lrzsz -y 上传:rz 下载:sz
- perl中foreach(一)
perl中的foreach结构 首先语法 foreach $rock(qw /bedrock slate lava/){ $rock="\t$rock"; ...
- 王小胖之 URL编码和解码
使用场景:程序员使用较多,主要是图个方便,实现很简单 实现功能:URL编码 和URL解码 数据实例: 输入:王小胖好啊,王小胖顶呱呱!! ~~ english 123 !@#$%^&*()_+ ...
- windows终端输入pip install requests报错:Fatal error in launcher
emm今天群友发了个图,说他的pip报错,是这个问题 emmm这个问题我也不太懂,后来让他pip install requests这样操作,, 还是不管用,我寻思这个错咋回事,让他用 python ...