Description

  斜堆(skew heap)是一种常用的数据结构。它也是二叉树,且满足与二叉堆相同的堆性质:每个非根结点的值
都比它父亲大。因此在整棵斜堆中,根的值最小。但斜堆不必是平衡的,每个结点的左右儿子的大小关系也没有任
何规定。在本题中,斜堆中各个元素的值均不相同。 在斜堆H中插入新元素X的过程是递归进行的:当H为空或者X
小于H的根结点时X变为新的树根,而原来的树根(如果有的话)变为X的左儿子。当X大于H的根结点时,H根结点的
两棵子树交换,而X(递归)插入到交换后的左子树中。 给出一棵斜堆,包含值为0~n的结点各一次。求一个结点
序列,使得该斜堆可以通过在空树中依次插入这些结点得到。如果答案不惟一,输出字典序最小的解。输入保证有
解。

Input

  第一行包含一个整数n。第二行包含n个整数d1, d2, ... , dn, di < 100表示i是di的左儿子,di>=100表示i
是di-100的右儿子。显然0总是根,所以输入中不含d0。

Output

  仅一行,包含n+1整数,即字典序最小的插入序列。

Sample Input

     

Sample Output

      

Solution

模拟一下

有这样的几个性质

1)最后一个插入的必为极左节点

2)无左儿子的节点,也必定无右儿子

#include <stdio.h>
#include <string.h>
char B[200],*p=B;
inline void e(register int &x)
{
for(;*p<'0'||*p>'9';p++);
for(x=0;*p>='0'&&*p<='9';p++)x=(x<<1)+(x<<3)+*p-'0';
}
int n,root,fa[100],ls[100],rs[100],a[100];
inline void solve()
{
register int x=root;
while(~rs[x])x=ls[x];
register int t=ls[x];
if((~t)&&(!~ls[t])&&(!~rs[t]))x=t;
a[++a[0]]=x;
if(x==root)root=ls[root];
register int f=fa[x];
if(~f)ls[f]=ls[x],fa[ls[f]]=f;
while(~f)ls[f]^=rs[f]^=ls[f]^=rs[f],f=fa[f];
}
int main()
{
fa[0]=-1,memset(ls,-1,sizeof ls),memset(rs,-1,sizeof rs),fread(p,1,200,stdin),e(n);
for(register int i=1,x;i<=n;i++)e(x),(x<100)?(fa[i]=x,ls[x]=i):(fa[i]=x-100,rs[x-100]=i);
for(register int i=0;i<=n;i++)solve();
for(;a[0];a[0]--)printf("%d ",a[a[0]]);
return 0;
}

  

[bzoj1078][SCOI2008][斜堆] (贪心)的更多相关文章

  1. BZOJ1078 [SCOI2008]斜堆 堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1078 题意概括 斜堆(skew heap)是一种常用的数据结构.它也是二叉树,且满足与二叉堆相同的 ...

  2. BZOJ1078: [SCOI2008]斜堆

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1078 每一次进入的点一定是一个极左节点,然后将它所处在的整棵树左右翻转.加上一些情况的处理. ...

  3. 【BZOJ1078】[SCOI2008]斜堆(性质题)

    [BZOJ1078][SCOI2008]斜堆(性质题) 题面 BZOJ 洛谷 题解 考虑一下这道题目的性质吧.思考一下最后插入进来的数是什么样子的.首先因为它是最后插入进来的,所以一定是比某个数小,然 ...

  4. 【bzoj1078】[SCOI2008]斜堆

    2016-05-31 16:34:09 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1078 挖掘斜堆的性质233 http://www.cp ...

  5. BZOJ 1078: [SCOI2008]斜堆

    1078: [SCOI2008]斜堆 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 770  Solved: 422[Submit][Status][ ...

  6. 【BZOJ 1078】 1078: [SCOI2008]斜堆

    1078: [SCOI2008]斜堆 Description 斜堆(skew heap)是一种常用的数据结构.它也是二叉树,且满足与二叉堆相同的堆性质:每个非根结点的值都比它父亲大.因此在整棵斜堆中, ...

  7. 【bzoj1078】 SCOI2008—斜堆

    http://www.lydsy.com/JudgeOnline/problem.php?id=1078 (题目链接) 题意 给出一个斜堆,并给出其插入的操作,求一个字典序最小的插入顺序. Solut ...

  8. [SCOI2008]斜堆

    题目大意 1.题目描述 斜堆(skew heap)是一种常用的数据结构. 它也是二叉树,且满足与二叉堆相同的堆性质: 每个非根结点的值都比它父亲大.因此在整棵斜堆中,根的值最小. . 但斜堆不必是平衡 ...

  9. P2475 [SCOI2008]斜堆(递归模拟)

    思路 可并堆真是一种神奇的东西 不得不说这道题是道好题,虽然并不需要可并堆,但是能加深对可并堆的理解 首先考虑斜堆的性质,斜堆和左偏树相似,有如下的性质 一个节点如果有右子树,就一定有左子树 最后插入 ...

随机推荐

  1. SAMP论文学习

    SAMP:稀疏度自适应匹配追踪 实际应用中信号通常是可压缩的而不一定为稀疏的,而且稀疏信号的稀疏度我们通常也会不了解的.论文中提到过高或者过低估计了信号的稀疏度,都会对信号的重构造成影响.如果过低估计 ...

  2. Hdu 4465 Candy (快速排列组合+概率)

    题目链接: Hdu 4465 Candy 题目描述: 有两个箱子,每个箱子有n颗糖果,抽中第一个箱子的概率为p,抽中另一个箱子的概率为1-p.每次选择一个箱子,有糖果就拿走一颗,没有就换另外一个箱子. ...

  3. 洛谷 P1430 序列取数

    如果按照http://www.cnblogs.com/hehe54321/p/loj-1031.html的$O(n^3)$做法去做的话是会T掉的,但是实际上那个做法有优化的空间. 所有操作可以分解为由 ...

  4. Service官方教程(2)*IntentService与Service示例、onStartCommand()3个返回值的含义。

    1.Creating a Started Service A started service is one that another component starts by calling start ...

  5. static属性

    static 属于全局,也就是类的属性 和方法,换句话说 一个类,不管有多少个实例,却只有一个全局变量 用static修饰的属性和方法称为静态属性和方法 需要注意的是 静态属性和方法属于类方法,加载类 ...

  6. 安装11g 数据库

    出现问题解决: 1.首先确认下载的安装包完整性.2解压包的时候,按顺序解压,解压第一个包后,解压第二个包的时候,要把解压地址与解压第二包的地址要一样. 安装的时候,需要把两个压缩包都解压,并将目录wi ...

  7. 443 String Compression 压缩字符串

    给定一组字符,使用原地算法将其压缩.压缩后的长度必须始终小于或等于原数组长度.数组的每个元素应该是长度为1 的字符(不是 int 整数类型).在完成原地修改输入数组后,返回数组的新长度.进阶:你能否仅 ...

  8. 对于JS == 运算的一些理解

    声明:本文是摘自一篇文章,放在这只为做为一个笔记能更好学习. 大家知道,==是JavaScript中比较复杂的一个运算符.它的运算规则奇怪,容易让人犯错,从而成为JavaScript中“最糟糕的特性” ...

  9. 学习笔记 第六章 使用CSS美化图片

    第六章  使用CSS美化图片 6.1  在网页中插入图片 GIF图像 跨平台能力,无兼容性问题: 具有减少颜色显示数目而极度压缩文件的能力,不会降低图像的品质(无损压缩): 支持背景透明功能,便于图像 ...

  10. Android开发中使用代码删除数据库

    更多信息参考:Android开发中使用代码删除数据库 在Android开发中,如果用到数据库,就会有一个很麻烦的问题,就是有时候需要删除数据库很麻烦,要打开Android Device Monitor ...