TensorFlow - 相关 API
来自:https://cloud.tencent.com/developer/labs/lab/10324
TensorFlow - 相关 API
TensorFlow 相关函数理解
任务时间:时间未知
tf.nn.conv2d
conv2d(
input,
filter,
strides,
padding,
use_cudnn_on_gpu=True,
data_format='NHWC',
name=None
)
功能说明:
卷积的原理可参考 A guide to convolution arithmetic for deep learning
参数列表:
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
input | 是 | tensor | 是一个 4 维的 tensor,即 [ batch, in_height, in_width, in_channels ](若 input 是图像,[ 训练时一个 batch 的图片数量, 图片高度, 图片宽度, 图像通道数 ]) |
filter | 是 | tensor | 是一个 4 维的 tensor,即 [ filter_height, filter_width, in_channels, out_channels ](若 input 是图像,[ 卷积核的高度,卷积核的宽度,图像通道数,卷积核个数 ]),filter 的 in_channels 必须和 input 的 in_channels 相等 |
strides | 是 | 列表 | 长度为 4 的 list,卷积时候在 input 上每一维的步长,一般 strides[0] = strides[3] = 1 |
padding | 是 | string | 只能为 " VALID "," SAME " 中之一,这个值决定了不同的卷积方式。VALID 丢弃方式;SAME:补全方式 |
use_cudnn_on_gpu | 否 | bool | 是否使用 cudnn 加速,默认为 true |
data_format | 否 | string | 只能是 " NHWC ", " NCHW ",默认 " NHWC " |
name | 否 | string | 运算名称 |
示例代码:
现在您可以在 /home/ubuntu 目录下创建源文件 conv2d.py,内容可参考:
示例代码:/home/ubuntu/conv2d.py
import tensorflow as tf
a = tf.constant([1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0],dtype=tf.float32,shape=[1,5,5,1])
b = tf.constant([1,0,1,0,1,0,1,0,1],dtype=tf.float32,shape=[3,3,1,1])
c = tf.nn.conv2d(a,b,strides=[1, 2, 2, 1],padding='VALID')
d = tf.nn.conv2d(a,b,strides=[1, 2, 2, 1],padding='SAME')
with tf.Session() as sess:
print ("c shape:")
print (c.shape)
print ("c value:")
print (sess.run(c))
print ("d shape:")
print (d.shape)
print ("d value:")
print (sess.run(d))
然后执行:
cd /home/ubuntu;
python conv2d.py
执行结果:
c shape:
(1, 3, 3, 1)
c value:
[[[[ 4.]
[ 3.]
[ 4.]]
[[ 2.]
[ 4.]
[ 3.]]
[[ 2.]
[ 3.]
[ 4.]]]]
d shape:
(1, 5, 5, 1)
d value:
[[[[ 2.]
[ 2.]
[ 3.]
[ 1.]
[ 1.]]
[[ 1.]
[ 4.]
[ 3.]
[ 4.]
[ 1.]]
[[ 1.]
[ 2.]
[ 4.]
[ 3.]
[ 3.]]
[[ 1.]
[ 2.]
[ 3.]
[ 4.]
[ 1.]]
[[ 0.]
[ 2.]
[ 2.]
[ 1.]
[ 1.]]]]
tf.nn.relu
relu(
features,
name=None
)
功能说明:
relu激活函数可以参考 CS231n: Convolutional Neural Networks for Visual Recognition
参数列表:
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
features | 是 | tensor | 是以下类型float32, float64, int32, int64, uint8, int16, int8, uint16, half |
name | 否 | string | 运算名称 |
示例代码:
现在您可以在 /home/ubuntu 目录下创建源文件 relu.py,内容可参考:
示例代码:/home/ubuntu/relu.py
import tensorflow as tf
a = tf.constant([1,-2,0,4,-5,6])
b = tf.nn.relu(a)
with tf.Session() as sess:
print (sess.run(b))
然后执行:
cd /home/ubuntu;
python relu.py
执行结果:
[1 0 0 4 0 6]
tf.nn.max_pool
max_pool(
value,
ksize,
strides,
padding,
data_format='NHWC',
name=None
)
功能说明:
池化的原理可参考 CS231n: Convolutional Neural Networks for Visual Recognition
参数列表:
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
value | 是 | tensor | 4 维的张量,即 [ batch, height, width, channels ],数据类型为 tf.float32 |
ksize | 是 | 列表 | 池化窗口的大小,长度为 4 的 list,一般是 [1, height, width, 1],因为不在 batch 和 channels 上做池化,所以第一个和最后一个维度为 1 |
strides | 是 | 列表 | 池化窗口在每一个维度上的步长,一般 strides[0] = strides[3] = 1 |
padding | 是 | string | 只能为 " VALID "," SAME " 中之一,这个值决定了不同的池化方式。VALID 丢弃方式;SAME:补全方式 |
data_format | 否 | string | 只能是 " NHWC ", " NCHW ",默认" NHWC " |
name | 否 | string | 运算名称 |
示例代码:
现在您可以在 /home/ubuntu 目录下创建源文件 max_pool.py,内容可参考:
示例代码:/home/ubuntu/max_pool.py
import tensorflow as tf
a = tf.constant([1,3,2,1,2,9,1,1,1,3,2,3,5,6,1,2],dtype=tf.float32,shape=[1,4,4,1])
b = tf.nn.max_pool(a,ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],padding='VALID')
c = tf.nn.max_pool(a,ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1],padding='SAME')
with tf.Session() as sess:
print ("b shape:")
print (b.shape)
print ("b value:")
print (sess.run(b))
print ("c shape:")
print (c.shape)
print ("c value:")
print (sess.run(c))
然后执行:
cd /home/ubuntu;
python max_pool.py
执行结果:
b shape:
(1, 2, 2, 1)
b value:
[[[[ 9.]
[ 2.]]
[[ 6.]
[ 3.]]]]
c shape:
(1, 2, 2, 1)
c value:
[[[[ 9.]
[ 2.]]
[[ 6.]
[ 3.]]]]
tf.nn.dropout
dropout(
x,
keep_prob,
noise_shape=None,
seed=None,
name=None
)
功能说明:
原理可参考 CS231n: Convolutional Neural Networks for Visual Recognition
参数列表:
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
x | 是 | tensor | 输出元素是 x 中的元素以 keep_prob 概率除以 keep_prob,否则为 0 |
keep_prob | 是 | scalar Tensor | dropout 的概率,一般是占位符 |
noise_shape | 否 | tensor | 默认情况下,每个元素是否 dropout 是相互独立。如果指定 noise_shape,若 noise_shape[i] == shape(x)[i],该维度的元素是否 dropout 是相互独立,若 noise_shape[i] != shape(x)[i] 该维度元素是否 dropout 不相互独立,要么一起 dropout 要么一起保留 |
seed | 否 | 数值 | 如果指定该值,每次 dropout 结果相同 |
name | 否 | string | 运算名称 |
示例代码:
现在您可以在 /home/ubuntu 目录下创建源文件 dropout.py,内容可参考:
示例代码:/home/ubuntu/dropout.py
import tensorflow as tf
a = tf.constant([1,2,3,4,5,6],shape=[2,3],dtype=tf.float32)
b = tf.placeholder(tf.float32)
c = tf.nn.dropout(a,b,[2,1],1)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print (sess.run(c,feed_dict={b:0.75}))
然后执行:
cd /home/ubuntu;
python dropout.py
执行结果:
[[ 0. 0. 0. ]
[ 5.33333349 6.66666651 8. ]]
tf.nn.sigmoid_cross_entropy_with_logits
sigmoid_cross_entropy_with_logits(
_sentinel=None,
labels=None,
logits=None,
name=None
)
功能说明:
先对 logits 通过 sigmoid 计算,再计算交叉熵,交叉熵代价函数可以参考 CS231n: Convolutional Neural Networks for Visual Recognition
参数列表:
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
_sentinel | 否 | None | 没有使用的参数 |
labels | 否 | Tensor | type, shape 与 logits相同 |
logits | 否 | Tensor | type 是 float32 或者 float64 |
name | 否 | string | 运算名称 |
示例代码:
现在您可以在 /home/ubuntu 目录下创建源文件 sigmoid_cross_entropy_with_logits.py:
示例代码:/home/ubuntu/sigmoid_cross_entropy_with_logits.py
import tensorflow as tf
x = tf.constant([1,2,3,4,5,6,7],dtype=tf.float64)
y = tf.constant([1,1,1,0,0,1,0],dtype=tf.float64)
loss = tf.nn.sigmoid_cross_entropy_with_logits(labels = y,logits = x)
with tf.Session() as sess:
print (sess.run(loss))
然后执行:
cd /home/ubuntu;
python sigmoid_cross_entropy_with_logits.py
执行结果:
[ 3.13261688e-01 1.26928011e-01 4.85873516e-02 4.01814993e+00
5.00671535e+00 2.47568514e-03 7.00091147e+00]
tf.truncated_normal
truncated_normal(
shape,
mean=0.0,
stddev=1.0,
dtype=tf.float32,
seed=None,
name=None
)
功能说明:
产生截断正态分布随机数,取值范围为 [ mean - 2 * stddev, mean + 2 * stddev ]
。
参数列表:
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
shape | 是 | 1 维整形张量或 array | 输出张量的维度 |
mean | 否 | 0 维张量或数值 | 均值 |
stddev | 否 | 0 维张量或数值 | 标准差 |
dtype | 否 | dtype | 输出类型 |
seed | 否 | 数值 | 随机种子,若 seed 赋值,每次产生相同随机数 |
name | 否 | string | 运算名称 |
示例代码:
现在您可以在 /home/ubuntu 目录下创建源文件 truncated_normal.py:
示例代码:/home/ubuntu/truncated_normal.py
import tensorflow as tf
initial = tf.truncated_normal(shape=[3,3], mean=0, stddev=1)
print(tf.Session().run(initial))
然后执行:
python /home/ubuntu/truncated_normal.py
执行结果:
将得到一个取值范围 [ -2, 2 ] 的 3 * 3 矩阵,您也可以尝试修改源代码看看输出结果有什么变化?
tf.constant
constant(
value,
dtype=None,
shape=None,
name='Const',
verify_shape=False
)
功能说明:
根据 value 的值生成一个 shape 维度的常量张量
参数列表:
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
value | 是 | 常量数值或者 list | 输出张量的值 |
dtype | 否 | dtype | 输出张量元素类型 |
shape | 否 | 1 维整形张量或 array | 输出张量的维度 |
name | 否 | string | 张量名称 |
verify_shape | 否 | Boolean | 检测 shape 是否和 value 的 shape 一致,若为 Fasle,不一致时,会用最后一个元素将 shape 补全 |
示例代码:
现在您可以在 /home/ubuntu 目录下创建源文件 constant.py,内容可参考:
示例代码:/home/ubuntu/constant.py
#!/usr/bin/python
import tensorflow as tf
import numpy as np
a = tf.constant([1,2,3,4,5,6],shape=[2,3])
b = tf.constant(-1,shape=[3,2])
c = tf.matmul(a,b)
e = tf.constant(np.arange(1,13,dtype=np.int32),shape=[2,2,3])
f = tf.constant(np.arange(13,25,dtype=np.int32),shape=[2,3,2])
g = tf.matmul(e,f)
with tf.Session() as sess:
print (sess.run(a))
print ("##################################")
print (sess.run(b))
print ("##################################")
print (sess.run(c))
print ("##################################")
print (sess.run(e))
print ("##################################")
print (sess.run(f))
print ("##################################")
print (sess.run(g))
然后执行:
python /home/ubuntu/constant.py
执行结果:
a: 2x3 维张量;
b: 3x2 维张量;
c: 2x2 维张量;
e: 2x2x3 维张量;
f: 2x3x2 维张量;
g: 2x2x2 维张量。
tf.placeholder
placeholder(
dtype,
shape=None,
name=None
)
功能说明:
是一种占位符,在执行时候需要为其提供数据
参数列表:
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
dtype | 是 | dtype | 占位符数据类型 |
shape | 否 | 1 维整形张量或 array | 占位符维度 |
name | 否 | string | 占位符名称 |
示例代码:
现在您可以在 /home/ubuntu 目录下创建源文件 placeholder.py,内容可参考:
示例代码:/home/ubuntu/placeholder.py
#!/usr/bin/python
import tensorflow as tf
import numpy as np
x = tf.placeholder(tf.float32,[None,3])
y = tf.matmul(x,x)
with tf.Session() as sess:
rand_array = np.random.rand(3,3)
print(sess.run(y,feed_dict={x:rand_array}))
然后执行:
python /home/ubuntu/placeholder.py
执行结果:
输出一个 3x3 的张量
tf.nn.bias_add
bias_add(
value,
bias,
data_format=None,
name=None
)
功能说明:
将偏差项 bias 加到 value 上面,可以看做是 tf.add 的一个特例,其中 bias 必须是一维的,并且维度和 value 的最后一维相同,数据类型必须和 value 相同。
参数列表:
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
value | 是 | 张量 | 数据类型为 float, double, int64, int32, uint8, int16, int8, complex64, or complex128 |
bias | 是 | 1 维张量 | 维度必须和 value 最后一维维度相等 |
data_format | 否 | string | 数据格式,支持 ' NHWC ' 和 ' NCHW ' |
name | 否 | string | 运算名称 |
示例代码:
现在您可以在 /home/ubuntu 目录下创建源文件 bias_add.py,内容可参考:
示例代码:/home/ubuntu/bias_add.py
#!/usr/bin/python
import tensorflow as tf
import numpy as np
a = tf.constant([[1.0, 2.0],[1.0, 2.0],[1.0, 2.0]])
b = tf.constant([2.0,1.0])
c = tf.constant([1.0])
sess = tf.Session()
print (sess.run(tf.nn.bias_add(a, b)))
#print (sess.run(tf.nn.bias_add(a,c))) error
print ("##################################")
print (sess.run(tf.add(a, b)))
print ("##################################")
print (sess.run(tf.add(a, c)))
然后执行:
python /home/ubuntu/bias_add.py
执行结果:
3 个 3x2 维张量。您也可以尝试修改源代码看看输出结果有什么变化?
tf.reduce_mean
reduce_mean(
input_tensor,
axis=None,
keep_dims=False,
name=None,
reduction_indices=None
)
功能说明:
计算张量 input_tensor 平均值
参数列表:
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
input_tensor | 是 | 张量 | 输入待求平均值的张量 |
axis | 否 | None、0、1 | None:全局求平均值;0:求每一列平均值;1:求每一行平均值 |
keep_dims | 否 | Boolean | 保留原来的维度(例如不会从二维矩阵降为一维向量) |
name | 否 | string | 运算名称 |
reduction_indices | 否 | None | 和 axis 等价,被弃用 |
示例代码:
现在您可以在 /home/ubuntu 目录下创建源文件 reduce_mean.py,内容可参考:
示例代码:/home/ubuntu/reduce_mean.py
#!/usr/bin/python
import tensorflow as tf
import numpy as np
initial = [[1.,1.],[2.,2.]]
x = tf.Variable(initial,dtype=tf.float32)
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
print(sess.run(tf.reduce_mean(x)))
print(sess.run(tf.reduce_mean(x,0))) #Column
print(sess.run(tf.reduce_mean(x,1))) #row
然后执行:
python /home/ubuntu/reduce_mean.py
执行结果:
1.5
[ 1.5 1.5]
[ 1. 2.]
tf.squared_difference
squared_difference(
x,
y,
name=None
)
功能说明:
计算张量 x、y 对应元素差平方
参数列表:
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
x | 是 | 张量 | 是 half, float32, float64, int32, int64, complex64, complex128 其中一种类型 |
y | 是 | 张量 | 是 half, float32, float64, int32, int64, complex64, complex128 其中一种类型 |
name | 否 | string | 运算名称 |
示例代码:
现在您可以在 /home/ubuntu 目录下创建源文件 squared_difference.py,内容可参考:
示例代码:/home/ubuntu/squared_difference.py
#!/usr/bin/python
import tensorflow as tf
import numpy as np
initial_x = [[1.,1.],[2.,2.]]
x = tf.Variable(initial_x,dtype=tf.float32)
initial_y = [[3.,3.],[4.,4.]]
y = tf.Variable(initial_y,dtype=tf.float32)
diff = tf.squared_difference(x,y)
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
print(sess.run(diff))
然后执行:
python /home/ubuntu/squared_difference.py
执行结果:
[[ 4. 4.]
[ 4. 4.]]
tf.square
square(
x,
name=None
)
功能说明:
计算张量对应元素平方
参数列表:
参数名 | 必选 | 类型 | 说明 |
---|---|---|---|
x | 是 | 张量 | 是 half, float32, float64, int32, int64, complex64, complex128 其中一种类型 |
name | 否 | string | 运算名称 |
示例代码:
现在您可以在 /home/ubuntu 目录下创建源文件 square.py,内容可参考:
示例代码:/home/ubuntu/square.py
#!/usr/bin/python
import tensorflow as tf
import numpy as np
initial_x = [[1.,1.],[2.,2.]]
x = tf.Variable(initial_x,dtype=tf.float32)
x2 = tf.square(x)
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
print(sess.run(x2))
然后执行:
python /home/ubuntu/square.py
执行结果:
[[ 1. 1.]
[ 4. 4.]]
TensorFlow 相关类理解
任务时间:时间未知
tf.Variable
__init__(
initial_value=None,
trainable=True,
collections=None,
validate_shape=True,
caching_device=None,
name=None,
variable_def=None,
dtype=None,
expected_shape=None,
import_scope=None
)
功能说明:
维护图在执行过程中的状态信息,例如神经网络权重值的变化。
参数列表:
参数名 | 类型 | 说明 |
---|---|---|
initial_value | 张量 | Variable 类的初始值,这个变量必须指定 shape 信息,否则后面 validate_shape 需设为 False |
trainable | Boolean | 是否把变量添加到 collection GraphKeys.TRAINABLE_VARIABLES 中(collection 是一种全局存储,不受变量名生存空间影响,一处保存,到处可取) |
collections | Graph collections | 全局存储,默认是 GraphKeys.GLOBAL_VARIABLES |
validate_shape | Boolean | 是否允许被未知维度的 initial_value 初始化 |
caching_device | string | 指明哪个 device 用来缓存变量 |
name | string | 变量名 |
dtype | dtype | 如果被设置,初始化的值就会按照这个类型初始化 |
expected_shape | TensorShape | 要是设置了,那么初始的值会是这种维度 |
示例代码:
现在您可以在 /home/ubuntu 目录下创建源文件 Variable.py,内容可参考:
示例代码:/home/ubuntu/Variable.py
#!/usr/bin/python
import tensorflow as tf
initial = tf.truncated_normal(shape=[10,10],mean=0,stddev=1)
W=tf.Variable(initial)
list = [[1.,1.],[2.,2.]]
X = tf.Variable(list,dtype=tf.float32)
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
print ("##################(1)################")
print (sess.run(W))
print ("##################(2)################")
print (sess.run(W[:2,:2]))
op = W[:2,:2].assign(22.*tf.ones((2,2)))
print ("###################(3)###############")
print (sess.run(op))
print ("###################(4)###############")
print (W.eval(sess)) #computes and returns the value of this variable
print ("####################(5)##############")
print (W.eval()) #Usage with the default session
print ("#####################(6)#############")
print (W.dtype)
print (sess.run(W.initial_value))
print (sess.run(W.op))
print (W.shape)
print ("###################(7)###############")
print (sess.run(X))
然后执行:
python /home/ubuntu/Variable.py
完成实验
任务时间:时间未知
实验内容已完成
您可进行更多关于机器学习教程:
- 实验列表 - 机器学习
关于 TensorFlow 的更多资料可参考 TensorFlow 官网 。
TensorFlow - 相关 API的更多相关文章
- TensorFlow — 相关 API
TensorFlow — 相关 API TensorFlow 相关函数理解 任务时间:时间未知 tf.truncated_normal truncated_normal( shape, mean=0. ...
- tensorflow相关API的学习
学习目录 1.tensorflow相关函数理解 (1)tf.nn.conv2d (2)tf.nn.relu (3)tf.nn.max_pool (4)tf.nn.dropout (5)tf.nn.si ...
- 主要DL Optimizer原理与Tensorflow相关API
V(t) = y*V(t-1) + learning_rate*G(x) x(t) = x(t-1) - V(t) 参考:https://arxiv.org/pdf/1609.04747.pdf DL ...
- 开源框架---通过Bazel编译使用tensorflow c++ API 记录
开源框架---通过Bazel编译使用tensorflow c++ API 记录 tensorflow python API,在python中借用pip安装tensorflow,真的很方便,几句指令就完 ...
- OpenGL FrameBufferCopy相关Api比较(glCopyPixels,glReadPixels,glCopyTexImage2D,glFramebufferTexture2D)
OpenGL FrameBufferCopy相关Api比较 glCopyPixels,glReadPixels,glCopyTexImage2D,glFramebufferTexture2D 标题所述 ...
- QQ音乐的各种相关API
QQ音乐的各种相关API 分类: oc2014-01-29 15:34 2676人阅读 评论(2) 收藏 举报 基本上论坛里做在线音乐的都在用百度的API,进来发现百度的API不仅歌曲的质量不可以保证 ...
- addChildViewController相关api深入剖析
注:本文根据个人的实践和理解写成,若有不当之处欢迎斧正和探讨! addChildViewController是一个从iOS5开始支持的api接口,相关的一系列的接口是用来处理viewcontrolle ...
- [原创]java WEB学习笔记44:Filter 简介,模型,创建,工作原理,相关API,过滤器的部署及映射的方式,Demo
本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...
- 关于iOS中用AudioFile相关API解码或播放AAC_HE_V2时仅仅能识别单声首22.05k採样率的问题
关于iOS中用AudioFile相关API解码或播放AAC_HE_V2时仅仅能识别单声首22.05k採样率的问题 在官方AQPlayer Demo 和 aqofflinerender中.都用了Audi ...
随机推荐
- Windows服务使用log4net记录日志
该文章是系列文章 基于.NetCore和ABP框架如何让Windows服务执行Quartz定时作业 的其中一篇. 比较流行的日志组件有以下四种,Topshelf都有相应的组件提供 log4net NL ...
- vs2013问题解决办法—>fatal error LNK1168 如何避免
问题:在使用visial studio 2013运行成功程序,但当修改其中的一段后,即语法,执行后报错 出现error:fatal error LNK1168:无法打开……\xxx.exe进行写入. ...
- [CQOI 2006]线段树之简单题
Description 有一个n个元素的数组,每个元素初始均为0.有m条指令,要么让其中一段连续序列数字反转--0变1,1变0(操作1),要么询问某个元素的值(操作2).例如当n=20时,10条指令如 ...
- 配置Ubuntu16.04第03步:安装搜狗输入法
1.进入搜狗官网:https://pinyin.sogou.com/linux/ ,下载搜狗输入法安装包 2.使用dpkg命令安装Deb包: sudo dpkg -i sogoupinyin_2.0. ...
- 积分图像 分类: 图像处理 Matlab 2015-06-06 10:30 149人阅读 评论(0) 收藏
积分图像(integral image)是一种快速计算矩形区域之和的数据结构,常利用它对算法进行加速.积分图像中处的值是原始灰度图像的左上角与当前点所围成的矩形区域内所有像素点的灰度值之和,即: 其中 ...
- synchronized(4)修饰语句块之:synchronized(this)
synchronized(this) 此时,线程获得的是对象锁.例如: public class Thread8 extends Thread { public void sync_fun() { s ...
- Android Dialogs(2)最好用DialogFragment创建Dialog
Creating a Dialog Fragment You can accomplish a wide variety of dialog designs—including custom layo ...
- ZOJ 3605Find the Marble(dp)
ZOJ 3605 大体意思就是 找出随机选了K个交换后 石子在第i个罐子里的概率最大 也就是可能的总数最大 这样就可以写出递推方程 dp[i][j][k] += dp[i-1][e][k]; (0&l ...
- 解决max解析记录与cname不能共存的问题
问题描述: 在腾讯上做了域名邮箱解析,需要将max记录绑定到主机记录为@(即空)的记录下. 而在做域名解析的时候,为了方便,需要将不带3w的域名也要解析到主机记录为@(即空)的记录下. 因此,解析报错 ...
- CREATE DOMAIN - 定义一个新域
SYNOPSIS CREATE DOMAIN name [AS] data_type [ DEFAULT expression ] [ constraint [ ... ] ] where const ...