KNN(K-nearest neighbors)

  • 思想简单
  • 数学所需知识少(近零)
  • 效果好
  • 可解释机器学习算法使用过程中的很多细节问题
  • 更完整的刻画机器学习应用的流程
  • 天然可解决多分类问题
  • 可解决回归问题

K近邻本质:如果两个样本足够相似,那么它们就有可能属于同一类别。

e.g. 绿色的点是新加入的点,取其最近的k(3)个点作为小团体来投票,票数高的获胜(蓝比红-3:0),所以绿点应该也是蓝点

计算距离:

最常见 -> 欧拉距离,求a, b两点的距离(二维,三维,多维):

 -> 

理解小笔记:((a样本第一个维度特征-b样本第一个维度特征)2 + (a样本第二个维度特征-b样本第二个维度特征)2 + ... ) 再开根

近乎可以说,KNN算法是机器学习中唯一一个不需要训练过程的算法。输入用例可直接送给训练数据集。

  • KNN可以被认为是没有模型的算法
  • 为和其他算法统一,可认为其训练数据集本身就是模型

使用KNN解决回归问题

绿点的值即可设为离它最近的三个点的(加权)平均值

KNN缺点

最大缺点:效率低下

如果训练集有m个样本,n个特征,则预测每一个新的数据,都需要计算它与每一个点之间的距离(共m个点),每计算一个点的距离就需要O(n)的时间复杂度。

每预测一个,共需要O(m*n)的时间复杂度。

优化,使用树的结构:KD-Tree, Ball-Tree

缺点2:高度数据相关

尽管所有的机器学习算法都是根据给定的数据集来学习,都是高度数据相关的。但KNN相对而言对outlier更加敏感。例如加入使用k=3,当预测点旁有两个错误数据就足以导致预测结果的错误。

缺点3:预测结果不具有可解释性

往往实际应用中我们只知道结果是什么是不够的,我们需要知道为什么是这样的结果从而得到某种规律可以进行推广。

缺点4:维数灾难

随维度的增加,“看似相近”的两个点之间的距离越来越大

解决方法:降维

超参数

指在算法运行前需要决定的参数。

与之相对的模型参数指:算法过程中学习的参数。

KNN算法中没有模型参数,其中K是典型的超参数。

寻找好的超参数:

  • 领域知识
  • 经验数值
  • 实验搜索:尝试测试几组不同的超参数,找到最好的配对

KNN中的其他超参数? -> 距离权重

权重一般取距离的倒数。

考虑距离权重的另一个好处:可解决平票问题

不考虑距离时,红蓝紫平票,模型会随机选一个颜色作为输出结果。但很明显这是不合理的(滑稽脸)。而加入距离权重后,则小红获胜(合情合理有理有据)。

更多的距离定义

之前说到的距离都是欧拉距离。还有一种常见的距离叫曼哈顿距离

定义为:两点在每个维度上距离的和。如上图例子中黑色两点的曼哈顿距离即它两在x方向上的差值加上y方向上的差值。所有彩线的曼哈顿距离都相同(其中绿线即欧拉距离)

推广一下可发现

  -> 曼哈顿距离

 -> 欧拉距离

 -> 明可夫斯基距离Minkowski distance

当p=1时,明可是曼哈顿距离,p=2时,变身成曼哈顿距离,p=其他数,其他距离的表示方式。

【系统提示】叮咚!又获得一个新的超参数,p

由sklearn中叫metric的超参数控制,默认为明可夫斯基距离

  • 向量空间余弦相似度 Cosine Similarity
  • 调整余弦相似度 Adjusted Cosine Similarity
  • 皮尔森相关系数 Pearson Correlation Coefficient
  • Jaccard相似系数 Jaccard Coefficient

KNN-K近邻算法(1)的更多相关文章

  1. 基本分类方法——KNN(K近邻)算法

    在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...

  2. 第四十六篇 入门机器学习——kNN - k近邻算法(k-Nearest Neighbors)

    No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如 ...

  3. KNN K~近邻算法笔记

    K~近邻算法是最简单的机器学习算法.工作原理就是:将新数据的每一个特征与样本集中数据相应的特征进行比較.然后算法提取样本集中特征最相似的数据的分类标签.一般来说.仅仅提取样本数据集中前K个最相似的数据 ...

  4. KNN (K近邻算法) - 识别手写数字

    KNN项目实战——手写数字识别 1. 介绍 k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法.它的工作原理是:存在一个 ...

  5. kNN(k近邻)算法代码实现

    目标:预测未知数据(或测试数据)X的分类y 批量kNN算法 1.输入一个待预测的X(一维或多维)给训练数据集,计算出训练集X_train中的每一个样本与其的距离 2.找到前k个距离该数据最近的样本-- ...

  6. 机器学习之K近邻算法(KNN)

    机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...

  7. 机器学习——KNN算法(k近邻算法)

    一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...

  8. k近邻算法(KNN)

    k近邻算法(KNN) 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. from sklearn.model_selection ...

  9. 1. K近邻算法(KNN)

    1. K近邻算法(KNN) 2. KNN和KdTree算法实现 1. 前言 K近邻法(k-nearest neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用, ...

  10. 机器学习:k-NN算法(也叫k近邻算法)

    一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集 ...

随机推荐

  1. 员工管理系统(集合与IO流的结合使用 beta1.0 ArrayList<Employee>)

    package cn.employee; public class Employee { private int empNo; private String name; private String ...

  2. Oracle中的日期数据类型

    TimeStamp日期类型 TimeStamp数据类型用于存储日期的年.月.日,以及时间的小时.分和秒,其中秒值精确到小数点后6位,该数据类型 同时包含时区信息.systimestamp函数的功能是返 ...

  3. C# KeepAlive的设置

    C# KeepAlive的相关设置 网上有很多相关KeepAlive的内容,终于找到了有关C#的这方面资料,设置了下,有行可靠! TcpListener myListener = new TcpLis ...

  4. WPF学习08:MVVM 预备知识之COMMAND

    WPF内建的COMMAND是GOF 提出的23种设计模式中,命令模式的实现. 本文是WPF学习07:MVVM 预备知识之数据绑定的后续,将说明实现COMMAND的三个重点:ICommand  Comm ...

  5. (四)SpringIoc之Bean装配

    在pom.xml的依赖 <dependencies> <!--测试包--> <dependency> <groupId>junit</groupI ...

  6. 表单<form></form>提交方式的区别

    <form action="" method="get/post"> 表单<form></form>的提交方式有两种:pos ...

  7. 460在全志r16平台tinav3.0系统下使用i2c-tools

    460在全志r16平台tinav3.0系统下使用i2c-tools 2018/9/6 19:05 版本:V1.0 开发板:SC3817R SDK:tina v3.0 1.01原始编译全志r16平台ti ...

  8. esp8266 串口通讯

    1.发送 调用uart_init(115200,115200);初始化串口,波特率设置为115200.前面一个是设置uart0的波特率.后面一个是设置.uart的波特率 然后就可以使用uart0_tx ...

  9. 实现上下全屏幕屏滚动效果js

    ---恢复内容开始--- 详情见代码 第一步:首先添加3个js文件: 1.http://cdn.staticfile.org/jquery/1.8.3/jquery.min.js 2.http://c ...

  10. JavaScript——分页