2281: [Sdoi2011]黑白棋

Time Limit: 3 Sec  Memory Limit: 512 MB
Submit: 626  Solved: 390
[Submit][Status][Discuss]

Description

小A和小B又想到了一个新的游戏。
这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色。
最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同。
小A可以移动白色棋子,小B可以移动黑色的棋子,他们每次操作可以移动1到d个棋子。
每当移动某一个棋子时,这个棋子不能跨越两边的棋子,当然也不可以出界。当谁不可以操作时,谁就失败了。
小A和小B轮流操作,现在小A先移动,有多少种初始棋子的布局会使他胜利呢?

Input

共一行,三个数,n,k,d。

Output

输出小A胜利的方案总数。答案对1000000007取模。

Sample Input

10 4 2

Sample Output

182

HINT

1<=d<=k<=n<=10000, k为偶数,k<=100。

Source

很有意思的一道博弈题,可惜HZWER学长给出了反例。

那么这一题通过手玩可以发现,最终状态必定是所有棋子全部扎堆在棋盘左端或右端,棋子之间没有间隙。不过仔细观察可以发现,可能在游戏状态中会出现所有棋子扎堆但不在棋盘一端的情况,其实那个时候就已经决定了最终的胜负。因为只要一方朝自己来的方向走了,则另一方必定能也往那边走一步,最终会步步紧逼直到走到棋盘一端。

根据这一点,感性理解一下,这个游戏就是一个把对方棋子“怼”过去的过程,谁怼赢了就是胜者。所以从一开始双方都一定拼尽全力往对面怼,所以有一个结论:先手不可能往左走,后手不可能往右走。

这样这个问题就变成了一个取石子游戏,每对相邻的白子和黑子之间的格子数是石子数(显然共有K/2堆石子),每人每次选不超过k堆取一个石子。

这个问题叫K-Nim,结论是:将所有石子数转成二进制,如果对于每一位二进制,这一位上为1的石子堆数都能被k+1整除则为必败态,否则为必胜态。

证明主要思路是: 1.最终态二进制每一位都为0必为必败态。2.只要有某位的1的个数不被k+1整除,则必然有一种走法使每一位都被整除。 3.如果每一位都被k+1整除,则无论怎么走都不可能使得每一位都仍然能被整除。

这三点分别保证了:最终态是必败态。必胜态必定能走到必败态。必败态只能走到必胜态。

详细证明:http://blog.csdn.net/weixinding/article/details/7321139

这样,我们分别用了“寻找最终态”和“模仿”的技巧将问题转化为了K-Nim问题。回到这一题,最终答案=总方案数-必败态的方案数。

设$f_{i,j}$表示前$i$个二进制位共放了$j$个石子的方案数,则$$ans=C_n^K-\sum_{i=0}^{n-K} f_{s,i}*C_{n-i-K/2}^{K/2}$$s为最高位的1,这里取15就够了。

考虑$f$的转移方程即可:$$f_{i+1,j+k*(d+1)*(1<<i)}\ \ +=\ \ f_{i,j}*C_{K/2}^{k*(d+1)}$$

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
typedef long long ll;
using namespace std; const ll N=,mod=;
ll tot,ans,bin[],c[N][],f[][N];
int n,K,d,p; void add(ll &x,ll y){ x=(x+y)%mod; }
void pre(){
rep(i,,n) c[i][]=;
rep(i,,n) rep(j,,min(*K,i)) c[i][j]=(c[i-][j]+c[i-][j-])%mod;
}
int C(int n,int m){ if (m>n-m) m=n-m; return c[n][m]; } int main(){
freopen("bzoj2281.in","r",stdin);
freopen("bzoj2281.out","w",stdout);
bin[]=; rep(i,,) bin[i]=bin[i-]<<;
scanf("%d%d%d",&n,&K,&d); K>>=;
pre(); f[][]=;
rep(i,,) rep(j,,n-*K)
for (int k=; k*(d+)<=K && j+k*(d+)*bin[i]<=n-*K; k++)
add(f[i+][j+k*(d+)*bin[i]],f[i][j]*C(K,k*(d+)));
rep(i,,n-*K) add(ans,f[][i]*C(n-i-K,K));
tot=C(n,K*); printf("%lld\n",(tot-ans+mod)%mod);
return ;
}

[BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)的更多相关文章

  1. BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏

    题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...

  2. BZOJ2281:[SDOI2011]黑白棋(博弈论,组合数学,DP)

    Description 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...

  3. [SDOI2011]黑白棋 kth - nim游戏

    题面 题面 题解 观察题目,我们可以发现,这个游戏其实就是不断再把对方挤到一边去,也就是黑子不断往左走,白子不断往右走. 因此可以发现,如果将黑白子按顺序两两配对,那么它们中间的距离会不断缩小,且每次 ...

  4. BZOJ2281 [SDOI2011]黑白棋 【dp + 组合数】

    题目 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色棋子 ...

  5. bzoj2281 [Sdoi2011]黑白棋

    一眼$nimk$游戏,后来觉得不对劲,看了黄学长博客发现真的不是$nimk$. 就当是$nimk$做吧,那么我们要保证每一位上一的个数都是$d+1$的倍数. $dp$:$f[i][j]$表示从低到高第 ...

  6. 【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)

    [BZOJ2281][SDOI2011]黑白棋(博弈论,动态规划) 题面 BZOJ 洛谷 题解 先看懂这题目在干什么. 首先BZOJ上面的题面没有图,换到洛谷看题就有图了. 不难发现都相邻的两个异色棋 ...

  7. Bzoj 2281 [Sdoi2011]黑白棋 题解

    2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec  Memory Limit: 512 MBSubmit: 592  Solved: 362[Submit][Status][ ...

  8. P2490 [SDOI2011]黑白棋

    P2490 [SDOI2011]黑白棋 题意 一个 \(1*n\) 的棋盘上,A 可以移动白色棋子,B 可以移动黑色的棋子,其中白色不能往左,黑色不能往右.他们每次操作可以移动 1 到 \(d\) 个 ...

  9. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

随机推荐

  1. 面向对象 ( OO ) 的程序设计——继承

    本文地址:http://www.cnblogs.com/veinyin/p/7608282.html  仅支持实现继承,且主要依靠原型链来实现,不过一般会混合构造函数一起实现继承 1 原型链 继承使用 ...

  2. iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址(2014年2月19日更新版)

    //转载请注明出处--本文永久链接:http://www.cnblogs.com/ChenYilong/p/3496069.html     编号 iOS-Apple苹果官方文档翻译名称 博文链接地址 ...

  3. node的简单爬虫

    最近在学node,这里简单记录一下. 首先是在linux的环境下,关于node的安装教程:   https://github.com/alsotang/node-lessons/tree/master ...

  4. 【leetcode 简单】第五十题 位1的个数

    编写一个函数,输入是一个无符号整数,返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量). 示例 : 输入: 11 输出: 3 解释: 整数 11 的二进制表示为 00000000000 ...

  5. POJ 3233 Matrix Power Series (矩阵快速幂)

    题目链接 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A^2 + A^3 + - ...

  6. 基于canvas的图片编辑合成器

    在我们日常的前端开发中,经常会要给服务器上传图片,但是局限很大,图片只能是已有的,假设我想把多张图片合成一张上传就需要借助图片编辑器了,但是现在我们有了canvas合成就简单多了 首先我们看图片编辑器 ...

  7. 【项目管理】git和码云的使用【转】

    转自:https://www.cnblogs.com/riverdubu/p/6491944.html 缘起 说了那么多关于git和码云相关的事,一直都没给大伙讲解这个码云究竟是个啥玩意儿. 今天就给 ...

  8. 概述sysfs文件系统【转】

    转自:http://blog.csdn.net/npy_lp/article/details/78933292 内核源码:linux-2.6.38.8.tar.bz2 目标平台:ARM体系结构 sys ...

  9. 微信JS-SDK接口 + FLASK实现图片上传

    最近在做一个项目从全球各地采集图片,考虑采用微信JS-SDK来简化开发.图片会首先上传到微信的服务器,返回一个id,然后根据这个id去微信服务器获取图片.微信提供可选择的压缩图片功能.图片首先上传到微 ...

  10. JVM内存分配及GC简述

    在阐述JVM的内存区域之前,先来看下计算机的存储单位.从小到大依次为Bit,Byte,KB,MB,GB,TB.相邻的单位相差2的10次方. 计算机运行中的存储元件主要分为寄存器(位于CPU)和内存,寄 ...