题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157

   https://www.lydsy.com/JudgeOnline/problem.php?id=3516

题解:http://blog.miskcoo.com/2014/06/bzoj-3157

没管 O(m) 的方法……

UPD(2019.2.20):这样构造的思想大概是想要用 \( f(j) \) (j<=i) 来表示出 \( f(i) \) 。

  考虑 \( f(m)=\sum\limits_{i=1}^{n}i^m*m^i \) ,那么要令 \( f(i) = \sum\limits_{k=1}^{n} k^i*i^k \) 还是 \( f(i) = \sum\limits_{k=1}^{n} k^i*m^k \) 还是 \( f(i) = \sum\limits_{k=1}^{n} k^m*i^k \) 呢?

  想构造出那个递推关系,一种方法是乘上一个 ( * - 1 ) ,然后用二项式定理拆开,再把一些项合并成 \( f(j) \) 。

  如果是这种方法的话, \( k^i \) 很好,因为在二项式的式子里,指数会变成一些较小的指数;而 \( i^k \) 则没有什么优势,所以令 \( f(i) = \sum\limits_{k=1}^{n}k^i*m^k \)

  现在想从 \( k^i \) 入手,弄出一个 \( (k-1)^i \) 或者 \( (k+1)^i \);一种方法是让后面那个 \( m^k \) 的指数变化1,也就是变成 \( m^{k+1} \) 或者 \( m^{k-1} \) ,这样改变一下枚举 k 的范围,就出现了 \( (k-1)^i \) 或者 \( (k+1)^i \) 了。

  让 \( m^k \) 指数变化就是给 \( f(i) \) 乘上一个 m 。再要有一个作对比的 \( \sum\limits_k \) ,才能实现让乘了 m 的那部分的 \( \sum\limits_k \) 改变。所以乘上 ( m-1 ) 或者 ( m+1 ) 。然后就可以考虑推式子了。

注意特判 m==1 的时候。因为那个式子不支持 m==1 。

UPD(2019.3.22):关于扰动法:https://www.cnblogs.com/meowww/p/6410869.html

  大概就是把 \( \sum\limits_{i=1}^{n} \) 的式子写成 \( \sum\limits_{i=1}^{n+1} \) 的样子,放在等号两边。

  然后一边把 i=n+1 的项拿出来,另一边把 i=1 的项拿出来。则另一边可以写成 \( \sum\limits_{i=1}^{n}(i+1)... \) ,就可以用二项式定理了。

  对于这道题,生搬硬套一下,式子就可以这样推:

  令 \( S_t=\sum\limits_{i=1}^{n}i^t * m^i \) ,则有

  \( S_t + (n+1)^t m^{n+1} = m + \sum\limits_{i=2}^{n+1}i^t * m^i \)

            \( = m + \sum\limits_{i=1}^{n}(i+1)^t * m^{i+1} \)

            \( = m + m \sum\limits_{i=1}^{n}\sum\limits_{j=0}^{t}\binom{t}{j}i^j * m^i \)

            \( = m + m \sum\limits_{j=0}^{t}\binom{t}{j}S_j \)

            \( = m + m*S_t + m \sum\limits_{j=0}^{t-1}\binom{t}{j}S_j \)

  所以 \( (m-1)S_t = (n+1)^t m^{n+1} - m - m \sum\limits_{j=0}^{t-1}\binom{t}{j}S_j \)

  实测和之前那个式子输出结果一样。

  1. #include<cstdio>
  2. #include<cstring>
  3. #include<algorithm>
  4. #define ll long long
  5. using namespace std;
  6. const int N=,mod=1e9+;
  7. int n,m,s[N],c[N][N];
  8. void upd(int &x){x>=mod?x-=mod:;}
  9. int pw(int x,int k)
  10. {int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;}
  11. void init()
  12. {
  13. for(int i=;i<=m;i++)c[i][]=;
  14. for(int i=;i<=m;i++)
  15. for(int j=;j<=i;j++)
  16. c[i][j]=c[i-][j]+c[i-][j-],upd(c[i][j]);
  17. }
  18. int main()
  19. {
  20. scanf("%d%d",&n,&m);init();
  21. if(m==){printf("%lld\n",((ll)(+n)*n>>1ll)%mod);return ;}
  22. s[]=(ll)m*(-pw(m,n))%mod*pw(-m,mod-)%mod+mod,upd(s[]);
  23. for(int i=,ml=(ll)n*pw(m,n+)%mod;i<=m;i++,ml=(ll)ml*n%mod)
  24. {
  25. int pls=;
  26. for(int j=,fx=(i&?-:);j<i;j++,fx=-fx)
  27. pls=(pls+(ll)c[i][j]*s[j]*fx)%mod+mod,upd(pls);
  28. s[i]=(ll)(ml+pls)*pw(m-,mod-)%mod;
  29. }
  30. printf("%d\n",s[m]);
  31. return ;
  32. }

bzoj 3157 && bzoj 3516 国王奇遇记——推式子的更多相关文章

  1. bzoj 3157 & bzoj 3516 国王奇遇记 —— 推式子

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.p ...

  2. BZOJ 3516 国王奇遇记加强版(乱推)

    题意 求\(\sum_{k=1}^{n}k^mm^k (n\leq1e9,m\leq1e3)\) 思路 在<>中有一个方法用来求和,称为摄动法. 我们考虑用摄动法来求这个和式,看能不能得到 ...

  3. 3157: 国王奇遇记 & 3516: 国王奇遇记加强版 - BZOJ

    果然我数学不行啊,题解君: http://www.cnblogs.com/zhuohan123/p/3726933.html const h=; var fac,facinv,powm,s:..]of ...

  4. BZOJ3157: 国王奇遇记 & 3516: 国王奇遇记加强版

    令\[S_i=\sum_{k=1}^n k^i m^k\]我们有\[\begin{eqnarray*}(m-1)S_i & = & mS_i - S_i \\& = & ...

  5. bzoj3157 3516 国王奇遇记

    Description Input 共一行包括两个正整数N和M. Output 共一行为所求表达式的值对10^9+7取模的值. 特判m=1 m≠1时: 设S[u]=sigma(i^u*m^i) m*S ...

  6. 【BZOJ】【3157】&【BZOJ】【3516】国王奇遇记

    数论 题解:http://www.cnblogs.com/zhuohan123/p/3726933.html copy一下推导过程: 令$$S_i=\sum_{k=1}^{n}k^im^k$$ 我们有 ...

  7. 【BZOJ3157/3516】国王奇遇记(数论)

    [BZOJ3157/3516]国王奇遇记(数论) 题面 BZOJ3157 BZOJ3516 题解 先考虑怎么做\(m\le 100\)的情况. 令\(f(n,k)=\displaystyle \sum ...

  8. bzoj3157国王奇遇记(秦九韶算法+矩乘)&&bzoj233AC达成

    bz第233题,用一种233333333的做法过掉了(为啥我YY出一个算法来就是全网最慢的啊...) 题意:求sigma{(i^m)*(m^i),1<=i<=n},n<=10^9,m ...

  9. bzoj3157: 国王奇遇记

    emmm...... 直接看题解好了: BZOJ-3157. 国王奇遇记 – Miskcoo's Space O(m)不懂扔掉 总之,给我们另一个处理复杂求和的方法: 找到函数之间的递推公式! 这里用 ...

随机推荐

  1. python 数组中如何根据值,获取索引,如何根据索引删除值 , 以及如何根据值删除值

    假设有一数组 s = [1,2,3,4,5,6,7,8,9] (1)如何根据值获取索引 ,如果值为5 , 那对应的索引为? (2)如何根据索引删除值 , 删除数组中索引5对应的值: (3)根据数组中的 ...

  2. 修改Pycharm for Mac背景色

    Mac 上面的Pycharm的背景是白色,太刺眼,网上教程那么多,实用性都不高,最终在csdn找到了一个. 修改步骤如下: pycharm -->Preferences --> Appea ...

  3. opencv画图

    #coding=utf-8 import cv2 import numpy as np img = cv2.imread("2.png",cv2.IMREAD_COLOR) cv2 ...

  4. 简单的HelloWorld

    简单的HelloWorld 步骤: -加入jar包 -在web.xml中配置DispatcherServlet -加入Spring MVC的配置文件 新建文件springmvc.xml: -编写处理请 ...

  5. Isolation Forest原理总结

    Isolation Forest(以下简称iForest)算法是由南京大学的周志华和澳大利亚莫纳什大学的Fei Tony Liu, Kai Ming Ting等人共同提出,用于挖掘异常数据[Isola ...

  6. day7-python类反射

    一.概述 一般的高阶语言都有反射的功能特性,python也不例外,网上资料显示,python支持类反射和模块反射,今天就先学习一下类反射的相关知识,模块反射后续再展开把.Python的类反射用于把字符 ...

  7. [C#]ref,out关键字的作用

    ref是传递参数的地址,out是返回值,两者有一定的相同之处,不过也有不同点. 使用ref前必须对变量赋值,out不用 out的函数会清空变量,即使变量已经赋值也不行,退出函数时所有out引用的变量都 ...

  8. 【51nod-1396】还是01串

    给定一个0-1串s,长度为n,下标从0开始,求一个位置k,满足0<=k<=n, 并且子串s[0..k - 1]中的0的个数与子串s[k..n - 1]中1的个数相等. 注意: (1) 如果 ...

  9. linux 字符串查找

    获取指定目录文件名包含指定字符的文件,然后遍历是否有包含特定字符串,有的话打出文件名 #!/bin/sh COMMAND=`find /data/home/ftp/data/20/201704/27/ ...

  10. Redis的高可用技术方案

    引言: redis是广为使用的缓存解决方案,本文将给出基于Sequential的高可用方案,自动进行主从的切换,在master节点down机之后,透明的进行切换. 主从节点的设置方案 设置主节点red ...