【BZOJ 4555】 4555: [Tjoi2016&Heoi2016]求和 (NTT)
4555: [Tjoi2016&Heoi2016]求和
Time Limit: 40 Sec Memory Limit: 128 MB
Submit: 315 Solved: 252Description
在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心。
现在他想计算这样一个函数的值:S(i, j)表示第二类斯特林数,递推公式为:S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1。边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i)你能帮帮他吗?Input
输入只有一个正整数
Output
输出f(n)。由于结果会很大,输出f(n)对998244353(7 × 17 × 223 + 1)取模的结果即可。1 ≤ n ≤ 100000
Sample Input
3Sample Output
87HINT
Source
【分析】
额。。要用第二类斯特林数的展开式?
表示并不会。于是看题解。ORZ。。ATP大神
带进去,注意不用管j从1到i,因为j从1到n的话后面都是0,没有关系的。
最后化成
一脸卷积么?个人认为还不是很能看出来。
但是,就是!
h用NTT求,然后求和即可。
再次ORZ。。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 500010
#define LL long long
const int Mod=;
const int G=; int a[Maxn],b[Maxn],fac[Maxn]; int qpow(int x,int b)
{
int ans=;
while(b)
{
if(b&) ans=1LL*ans*x%Mod;
x=1LL*x*x%Mod;
b>>=;
}
return ans;
} int nn,R[Maxn],inv;
void ntt(int *s,int f)
{
for(int i=;i<nn;i++) if(i<R[i]) swap(s[i],s[R[i]]);
for(int i=;i<nn;i<<=)
{
int wn=qpow(G,(Mod-)/(i<<));
for(int j=;j<nn;j+=(i<<))
{
int w=;
for(int k=;k<i;k++)
{
int x=s[j+k],y=1LL*w*s[j+k+i]%Mod;
s[j+k]=(x+y)%Mod;s[j+k+i]=((x-y)%Mod+Mod)%Mod;
w=1LL*w*wn%Mod;
}
}
}
if(f==-)
{
reverse(s+,s+nn);
for(int i=;i<=nn;i++) s[i]=1LL*s[i]*inv%Mod;
}
} int main()
{
int n;
scanf("%d",&n);
fac[]=;for(int i=;i<=n;i++) fac[i]=1LL*i*fac[i-]%Mod;
for(int i=;i<=n;i++)
{
a[i]=qpow(fac[i],Mod-);
if(i&) a[i]=Mod-a[i];
b[i]=(-qpow(i,n+))%Mod;
b[i]=1LL*b[i]*qpow(-i,Mod-)%Mod;
b[i]=1LL*b[i]*qpow(fac[i],Mod-)%Mod;
b[i]=(b[i]%Mod+Mod)%Mod;
}
nn=;int ll=;
while(nn<=*n) nn<<=,ll++;
for(int i=;i<=nn;i++) R[i]=(R[i>>]>>)|((i&)<<(ll-));
inv=qpow(nn,Mod-);
b[]=n+;
ntt(a,);ntt(b,);
for(int i=;i<=nn;i++) a[i]=1LL*a[i]*b[i]%Mod;
ntt(a,-);
int ans=;
for(int i=;i<=n;i++) ans=(ans+1LL*a[i]*qpow(,i)%Mod*fac[i])%Mod;
printf("%d\n",ans);
return ;
}
代码只需在FFT基础上修改一点点即可。
对于原根,因为你读题时就知道模数,你可以自己打个暴力求一下。具体方法在FFT和NTT总结中有说。
然后你直接赋值原根G的值就好了。
2017-04-14 15:10:42
【BZOJ 4555】 4555: [Tjoi2016&Heoi2016]求和 (NTT)的更多相关文章
- bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化
[Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 679 Solved: 534[Submit][S ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)
题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j ...
- bzoj 4555 [Tjoi2016&Heoi2016]求和——NTT+第二类斯特林数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 第二类斯特林数展开式: \( S(i,j) = \frac{1}{j!} \sum\l ...
- 【BZOJ 4555】[Tjoi2016&Heoi2016]求和 多项式求逆/NTT+第二类斯特林数
出处0.0用到第二类斯特林数的性质,做法好像很多,我打的是直接ntt,由第二类斯特林数的容斥公式可以推出,我们可以对于每一个i,来一次ntt求出他与所有j组成的第二类斯特林数的值,这个时候我们是O(n ...
- 【bzoj4555】[Tjoi2016&Heoi2016]求和 NTT
题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) ...
- 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT
[题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- [BZOJ4555][TJOI2016&HEOI2016]求和(分治FFT)
4555: [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 525 Solved: 418[Sub ...
随机推荐
- 【BZOJ】4766: 文艺计算姬
[题目]给定两边节点数为n和m的完全二分图,求生成树数取模给定的p.n,m,p<=10^18. [算法]生成树计数(矩阵树定理) [题解]参考自 [bzoj4766]文艺计算姬 by WerKe ...
- 一般处理程序、ASP.NET核心知识(5)
初窥 1.新建一个一般处理程序 新建一个一般处理程序 2.看看里头的代码 public class MyHandler : IHttpHandler { public void ProcessRequ ...
- 《Troubleshooting SQL Server》读书笔记-CPU使用率过高(上)
第三章 High CPU Utilization. CPU使用率过高问题很容易被发现,但是诊断却不是很容易.CPU使用过高很多时候会成为其它问题的替罪羊,所以在确认和故障诊断时要抽丝剥茧. 调查CPU ...
- ES6核心,值得驻足花一天时间来学习
1.let 和 const 命令 在es5时,只有两种变量声明,var 和function.在es6中新增了四种let和const,以及另外两种声明import和class. 我们先讲解let和con ...
- 实验吧CTF题库之二叉树遍历
题目链接:http://www.shiyanbar.com/ctf/1868 直接推算出来这棵树是: 后序遍历是:ACBFGED 参考资料: 1. http://www.shiyanbar.com/c ...
- 爬虫--PySpider框架
PySpider框架 PySpider框架的作用
- 深入理解Spring系列之一:开篇
转载 https://mp.weixin.qq.com/s?__biz=MzI0NjUxNTY5Nw==&mid=2247483810&idx=1&sn=a2df14fdb63 ...
- tera term通过ttl脚本 自动连接服务器(转自http://www.cnblogs.com/wxb0328/p/teraterm.html)
转自http://www.cnblogs.com/wxb0328/p/teraterm.html 在现在的这个公司一直使用tera term来远程连接服务器,感觉很方便,特别是它的ttl脚本配置的自动 ...
- HDU 6198 2017沈阳网络赛 线形递推
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6198 题意:给出一个数k,问用k个斐波那契数相加,得不到的数最小是几. 解法:先暴力打表看看有没有规律 ...
- windows下安装多个mysql
1.正常安装mysql5.1.33 安装服务名为mysql3306 安装目录d:\mysql5.1\3306 安装完成后,关闭服务 ① 复制安装文件 将默认安装目录C:\Documents and S ...