【BZOJ 4555】 4555: [Tjoi2016&Heoi2016]求和 (NTT)
4555: [Tjoi2016&Heoi2016]求和
Time Limit: 40 Sec Memory Limit: 128 MB
Submit: 315 Solved: 252Description
在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心。
现在他想计算这样一个函数的值:S(i, j)表示第二类斯特林数,递推公式为:S(i, j) = j ∗ S(i − 1, j) + S(i − 1, j − 1), 1 <= j <= i − 1。边界条件为:S(i, i) = 1(0 <= i), S(i, 0) = 0(1 <= i)你能帮帮他吗?Input
输入只有一个正整数
Output
输出f(n)。由于结果会很大,输出f(n)对998244353(7 × 17 × 223 + 1)取模的结果即可。1 ≤ n ≤ 100000
Sample Input
3Sample Output
87HINT
Source
【分析】
额。。要用第二类斯特林数的展开式?
表示并不会。于是看题解。ORZ。。ATP大神
带进去,注意不用管j从1到i,因为j从1到n的话后面都是0,没有关系的。
最后化成
一脸卷积么?个人认为还不是很能看出来。
但是,就是!
h用NTT求,然后求和即可。
再次ORZ。。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 500010
#define LL long long
const int Mod=;
const int G=; int a[Maxn],b[Maxn],fac[Maxn]; int qpow(int x,int b)
{
int ans=;
while(b)
{
if(b&) ans=1LL*ans*x%Mod;
x=1LL*x*x%Mod;
b>>=;
}
return ans;
} int nn,R[Maxn],inv;
void ntt(int *s,int f)
{
for(int i=;i<nn;i++) if(i<R[i]) swap(s[i],s[R[i]]);
for(int i=;i<nn;i<<=)
{
int wn=qpow(G,(Mod-)/(i<<));
for(int j=;j<nn;j+=(i<<))
{
int w=;
for(int k=;k<i;k++)
{
int x=s[j+k],y=1LL*w*s[j+k+i]%Mod;
s[j+k]=(x+y)%Mod;s[j+k+i]=((x-y)%Mod+Mod)%Mod;
w=1LL*w*wn%Mod;
}
}
}
if(f==-)
{
reverse(s+,s+nn);
for(int i=;i<=nn;i++) s[i]=1LL*s[i]*inv%Mod;
}
} int main()
{
int n;
scanf("%d",&n);
fac[]=;for(int i=;i<=n;i++) fac[i]=1LL*i*fac[i-]%Mod;
for(int i=;i<=n;i++)
{
a[i]=qpow(fac[i],Mod-);
if(i&) a[i]=Mod-a[i];
b[i]=(-qpow(i,n+))%Mod;
b[i]=1LL*b[i]*qpow(-i,Mod-)%Mod;
b[i]=1LL*b[i]*qpow(fac[i],Mod-)%Mod;
b[i]=(b[i]%Mod+Mod)%Mod;
}
nn=;int ll=;
while(nn<=*n) nn<<=,ll++;
for(int i=;i<=nn;i++) R[i]=(R[i>>]>>)|((i&)<<(ll-));
inv=qpow(nn,Mod-);
b[]=n+;
ntt(a,);ntt(b,);
for(int i=;i<=nn;i++) a[i]=1LL*a[i]*b[i]%Mod;
ntt(a,-);
int ans=;
for(int i=;i<=n;i++) ans=(ans+1LL*a[i]*qpow(,i)%Mod*fac[i])%Mod;
printf("%d\n",ans);
return ;
}
代码只需在FFT基础上修改一点点即可。
对于原根,因为你读题时就知道模数,你可以自己打个暴力求一下。具体方法在FFT和NTT总结中有说。
然后你直接赋值原根G的值就好了。
2017-04-14 15:10:42
【BZOJ 4555】 4555: [Tjoi2016&Heoi2016]求和 (NTT)的更多相关文章
- bzoj 4555 [Tjoi2016&Heoi2016]求和 NTT 第二类斯特林数 等比数列求和优化
[Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 679 Solved: 534[Submit][S ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)
题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j ...
- bzoj 4555 [Tjoi2016&Heoi2016]求和——NTT+第二类斯特林数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 第二类斯特林数展开式: \( S(i,j) = \frac{1}{j!} \sum\l ...
- 【BZOJ 4555】[Tjoi2016&Heoi2016]求和 多项式求逆/NTT+第二类斯特林数
出处0.0用到第二类斯特林数的性质,做法好像很多,我打的是直接ntt,由第二类斯特林数的容斥公式可以推出,我们可以对于每一个i,来一次ntt求出他与所有j组成的第二类斯特林数的值,这个时候我们是O(n ...
- 【bzoj4555】[Tjoi2016&Heoi2016]求和 NTT
题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) ...
- 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT
[题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- [BZOJ4555][TJOI2016&HEOI2016]求和(分治FFT)
4555: [Tjoi2016&Heoi2016]求和 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 525 Solved: 418[Sub ...
随机推荐
- IDEA不显示更新、提交按钮
问题描述: IDEA右上角不显示版本管理的“更新”.“提交”等按钮,左侧代码树中,也没有文件的状态 解决办法: 点击VCS-->Enable Version Control Integratio ...
- Xcode变量概览-summary
问题描述 在Xcode中断点调试时,鼠标停留在变量上,就能看到变量的信息.但对于自定义对象,通常Xcode提供的直接信息非常有限,像这样 想要了解这个对象具体的内容,需要展开左边的箭头 当开发者想要知 ...
- Verilog笔记.3.有限状态机
有限状态机有限状态机是由寄存器组和组合逻辑构成的硬件时序电路,其状态(即由寄存器组的1和0的组合状态所构成的有限个状态)只可能在同一时钟跳变沿的情况下才能从一个状态转向另一个状态,究竟转向哪一状态还是 ...
- 生成验证码tp
js里拼接随机数 页面上链接 去掉后缀名
- flask插件系列之flask_celery异步任务神器
现在继续学习在集成的框架中如何使用celery. 在Flask中使用celery 在Flask中集成celery需要做到两点: 创建celery的实例对象的名字必须是flask应用程序app的名字,否 ...
- CentOS测网速
当发现上网速度变慢时,人们通常会先首先测试自己的电脑到网络服务提供商(通常被称为"最后一公里")的网络连接速度.在可用于测试宽带速度的网站中,Speedtest.net也许是使用最 ...
- PHP 快速建立一个对象
前言 PHP 中的数组(尤其关联数组)是经常使用的 —— 因为方便.在一些框架中也经常见到返回数组格式的配置参数.然而有些时候可能需要对象而非数组类型的配置参数,在查阅网络资料后找到了方法,作以记录. ...
- Deep Learning基础--随时间反向传播 (BackPropagation Through Time,BPTT)推导
1. 随时间反向传播BPTT(BackPropagation Through Time, BPTT) RNN(循环神经网络)是一种具有长时记忆能力的神经网络模型,被广泛用于序列标注问题.一个典型的RN ...
- Ubuntu下安装Sublime Text3
1. 下载软件 Ctrl+Alt+T 调出命令窗口执行下面命令下载安装包: sudo add-apt-repository ppa:webupd8team/sublime-text-3 2. 更新软件 ...
- 2018-2019-2 网络对抗技术 20165301 Exp6 信息搜集与漏洞扫描
2018-2019-2 网络对抗技术 20165301 Exp6 信息搜集与漏洞扫描 1.实践目标 掌握信息搜集的最基础技能与常用工具的使用方法. 2.实践内容 (1)各种搜索技巧的应用 (2)DNS ...