洛谷——P1349 广义斐波那契数列
题目描述
广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。
输入输出格式
输入格式:
输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。
输出格式:
输出包含一行一个整数,即an除以m的余数。
输入输出样例
1 1 1 1 10 7
6
说明
数列第10项是55,除以7的余数为6。
我们来通过这个题讲一下斐波那契数列怎么用矩阵乘法来优化吧
我们知道对于斐波那契数列我们有这样的递推式:f[n]=f[n-1]+f[n-2]
通常情况下,我们计算f(n)的时间复杂度就是O(n)(分别计算f(1), f(2) ... f(n - 1)).
但是当n很大又或者还有其他处理的复杂度一叠加便会超时。
所以当n很大的时候,我们的递推式便不起作用了,我们应该像一种办法来优化一下这个递推式,怎么办呢,我们看到这个式子有加,有乘,我们就一般会想到矩阵乘法(这时候就有人会问了,博主,你眼瞎啊,明明就是个加法的式子,你说他有乘法。。。)额、、对于这个问题,我们可以将上面的式子做一个小小的变形,将它变成f[n]=f[n-1]*1+f[n-2]*1, f[n-1]=f[n-1]*1+f[n-2]*0
我们在这个地方普及一下矩阵乘法优化递推式的特征:形如f(n) = a1 * f(n - 1) + a2 * f(n - 2) + ... + ak * f(n - k)+c (c为常数)
然后我们可以将他组成这样的一个矩阵
然后我们进行矩阵乘法
来,看看代码:
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define mod 100000000 using namespace std; int n; int read() { ,f=; char ch=getchar(); ;ch=getchar();} +ch-',ch=getchar(); return x*f; } struct Node { ][]; Node(){memset(m,,sizeof(m));} }mb,ans; int GCD(int a,int b) { ) return a; return GCD(b,a%b); } Node operator*(Node a,Node b) { Node c; ;i<=;i++) ;j<=;j++) ;k<=;k++) c.m[i][j]=(c.m[i][j]%mod+a.m[i][k]*b.m[k][j]%mod)%mod; return c; } int main() { n=read();n--; mb.m[][]=mb.m[][]=mb.m[][]=; ans.m[][]=ans.m[][]=; while(n) { &n) ans=ans*mb; mb=mb*mb;n>>=; } cout<<ans.m[][]; ; }
矩阵乘法优化斐波那契
对于这个式子,我们可以根据朴素的斐波那契的矩阵乘法的形式将式子推出来
#include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #include<algorithm> using namespace std; long long q,p,a1,a2,n,mod; long long read() { ,f=; char ch=getchar(); ;ch=getchar();} +ch-',ch=getchar(); return x*f; } struct Node { ][]; Node(){memset(m,,sizeof(m));} }begin,ans; Node operator*(Node a,Node b) { Node c; ;i<=;i++) ;j<=;j++) ;k<=;k++) c.m[i][j]=(c.m[i][j]%mod+(a.m[i][k]%mod*b.m[k][j]%mod)%mod)%mod; return c; } int main() { p=read(),q=read(),a1=read(),a2=read(); n=read(),mod=read();n-=; ans.m[][]=a2,ans.m[][]=a1; begin.m[][]=p,begin.m[][]=q,begin.m[][]=; while(n) { ) ans=ans*begin; begin=begin*begin; n>>=; } ==) cout<<ans.m[][]%mod; ][]%mod; ; }
洛谷——P1349 广义斐波那契数列的更多相关文章
- 洛谷P1349 广义斐波那契数列(矩阵快速幂)
P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...
- 洛谷——P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...
- 洛谷P1349 广义斐波那契数列
传送门 话说谁能告诉我矩阵怎么用latex表示…… 差不多就这样 //minamoto #include<iostream> #include<cstdio> #include ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
- P1349 广义斐波那契数列
题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...
- Luogu P1349 广义斐波那契数列
解题思路 既然广义斐波那契,而且数据范围这么大,那么我们使用矩阵快速幂来进行求解.大家都知道斐波那契的初始矩阵如下 $$\begin{bmatrix}1&1\\1&0\end{bmat ...
- 【洛谷P1962】斐波那契数列
斐波那契数列 题目链接:https://www.luogu.org/problemnew/show/P1962 矩阵A 1,1 1,0 用A^k即可求出feb(k). 矩阵快速幂 #include&l ...
随机推荐
- Jquery 操作 Select 详解
jQuery是如何控制和操作select的.先看下面的代码 比如<select class="selector"></select> 1.设置value为p ...
- 816D.Karen and Test 杨辉三角 规律 组合
LINK 题意:给出n个数,每个数对间进行加或减,结果作为下一层的数,问最后的值为多少 思路:首先我们发现很像杨辉三角,然后考虑如何计算每个数对结果的贡献值,找规律可以发现当数的个数为偶数时,其所在层 ...
- SQLServer字符串的一些截取技巧
先看一张科学家的生卒年月表 截取科学家的出生年份可以很方便的用left函数截取,如果要截取去世年份,需要先获取字符“—”的位置. select substring(c,charindex('—',c) ...
- 最常用的8款 PHP 调试工具,你用过吗?
Web 开发并不是一项轻松的任务,有超级多服务端脚本语言提供给开发者,但是当前 PHP 因为具有额外的一些强大的功能而越来越流行.PHP 是最强大的服务端脚本语言之一,同时也是 Web 开发者和设计者 ...
- 【CodeForces】576 B. Invariance of Tree
[题目]B. Invariance of Tree [题意]给定n个数的置换,要求使n个点连成1棵树,满足u,v有边当且仅当a[u],a[v]有边,求一种方案或无解.n<=10^5. [算法]数 ...
- 详细说说如何生成验证码—ASP.NET细枝末节(4)
前言 今天小编详细的说一下,ASP.NET网站开发过程中生成验证码的全部问题. 本文的目标,是让读者了解,生成验证码涉及的全部基础知识问题. 当然这里说的是比较简单的验证码. 真正符合要求的验证码,涉 ...
- mybatis错误总结
1:传递多个参数失败 Parameter 'username' not found. Available parameters are [0, 1, param1, param2] dao层错误写 ...
- AngularJS 指令绑定 & 简介
指令中独立scope 的 & 官方说明: 1. 绑定表达式 2. 经常用来绑定回调函数 诡异的地方在于,这个 & 某次听人说在子组件中是不能传值给callback的,好奇查了一下官方文 ...
- AUC画图与计算
利用sklearn画AUC曲线 from sklearn.metrics import roc_curve labels=[1,1,0,0,1] preds=[0.8,0.7,0.3,0.6,0.5] ...
- imperva系统升级遇见的错误(配置文件的导入导出)
今天心态有点炸了 今天去东兴证券做waf升级.浪费了两天才弄完.把客户都弄得有点急了.好歹原厂的工程师耐心的讲解这才弄完.感谢路哥.... 赶紧总结一下. 事情是这样的.东兴 证券的imperva是v ...