codeJan喜欢观察世界。有一天,codeJan发现一个非常奇怪的现象。有一些年轻的青蛙聚集在一条直线上的某些位置上,同一个位置可能有多个青蛙。这些青蛙每次只会向前跳一米,并且每只青蛙每跳一次都会发出’WA’的一声。codeJan想在一些青蛙的位置上放置黑洞来收集全部的青蛙。在黑洞位置上的青蛙会直接掉进黑洞中不会发出任何叫声,其余的青蛙经过若干次跳跃都会掉进在它前面的最近的黑洞。因为WA类似WrongAnswer,所以codeJan想要知道他合理地安排黑洞的位置,最少可以听到多少声WA?在听到最少声WA时,需要准备的每个黑洞的容量至少为多少?黑洞的容量体现为可以容纳的青蛙的最大数量,所有黑洞的容量应该都相同。

输入描述:

第一行一个正整数T≤20表示测试组数。每组测试样例的第一行是两个正整数n,m,分别表示存在青蛙的位置和可以放置黑洞的数量。接下来n行,每行包含两个正整数a[i],b[i]分别表示第i组青蛙的位置(单位:米)和这个位置上青蛙的数量。

输出描述:

对于每组测试用例用一行输出两个正整数分别表示最少可以听到多少声WA和黑洞的最少容量。用空格隔开,行末无空格。
示例1

输入

2
3 1
1 1
2 2
3 3
3 2
1 1
4 2
2 3

输出

8 6
3 4

说明

对于第一个样例,只能放在 1 位置,因此听到的 WA 的次数为:1*0+2*1+3*2=8,所有青蛙汇聚在一次,容量至少为 6。
对于第二个样例,可以放在 1 和 4 位置,因此听到的 WA 的次数为:1*0+3*1+2*0=3,1 位置和 2 位置的青蛙汇聚在一 起,需要容量为 4;4 位置的青蛙单独在一起,需要容量为 2。因此容量至少为 4

备注:

输入保证a[i] ≠a[j](i ≠j),1≤m≤n≤100,1≤a[i],b[i]≤106。

题解

$dp$,二分。

$dp[i][j]$表示到$i$位置,分了$j$段的最小花费,每一个区间的花费可以预处理。

$dp[1][m]$就是第一个答案。

对于第二个答案,容量越大,最小花费肯定越小,容量越小,最小花费越大,利用这个单调性就可以二分,假设二分到的容量为$x$,那么$dp$的时候外加一个条件控制一下区间和要小于等于$x$。

#include <bits/stdc++.h>
using namespace std; const int maxn = 100 + 10;
int T, n, m;
struct X {
int a, b;
}s[maxn];
long long cost[maxn][maxn];
long long dp[maxn][maxn];
long long sum[maxn][maxn];
long long limit; bool cmp(const X& a, const X& b) {
return a.a < b.a;
} int check(long long mid) {
for(int i = 1; i <= n; i ++) {
dp[i][1] = 1e18;
if(sum[i][n] <= mid) dp[i][1] = cost[i][n];
}
for(int j = 2; j <= m; j ++) {
for(int i = n - j + 1; i >= 1; i --) {
dp[i][j] = 1e18;
for(int k = i + 1; k <= n; k ++) {
if(dp[k][j - 1] != 1e18 && sum[i][k - 1] <= mid) {
dp[i][j] = min(dp[i][j], dp[k][j - 1] + cost[i][k - 1]);
}
}
}
}
if(limit == dp[1][m]) return 1;
return 0;
} int main() {
scanf("%d", &T);
while(T --) {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i ++) {
scanf("%d%d", &s[i].a, &s[i].b);
}
sort(s + 1, s + 1 + n, cmp);
for(int i = 1; i <= n; i ++) {
for(int j = i; j <= n; j ++) {
cost[i][j] = cost[i][j - 1] + 1LL * (s[j].a - s[i].a) * s[j].b;
sum[i][j] = sum[i][j - 1] + s[j].b;
}
}
for(int i = 1; i <= n; i ++) dp[i][1] = cost[i][n];
for(int j = 2; j <= m; j ++) {
for(int i = n - j + 1; i >= 1; i --) {
dp[i][j] = 1e18;
for(int k = i + 1; k <= n; k ++) {
dp[i][j] = min(dp[i][j], dp[k][j - 1] + cost[i][k - 1]);
}
}
}
limit = dp[1][m];
long long ans2 = sum[1][n];
long long L = 1, R = ans2;
while(L <= R) {
long long mid = (L + R) / 2;
if(check(mid)) ans2 = mid, R = mid - 1;
else L = mid + 1;
}
printf("%lld %lld\n", limit, ans2);
}
return 0;
}

Wannafly挑战赛7 D - codeJan与青蛙的更多相关文章

  1. Wannafly挑战赛7 B - codeJan与旅行

    题目描述 codeJan 非常喜欢旅行.现在有 n 个城市排在一条线上,并且 codeJan 的位置不和任何一个城市的位置重叠.codeJan 想要游览 m 个城市,同时因为时间是不断变化的,游览一个 ...

  2. Wannafly挑战赛25游记

    Wannafly挑战赛25游记 A - 因子 题目大意: 令\(x=n!(n\le10^{12})\),给定一大于\(1\)的正整数\(p(p\le10000)\)求一个\(k\)使得\(p^k|x\ ...

  3. Wannafly挑战赛27

    Wannafly挑战赛27 我打的第一场$Wannafly$是第25场,$T2$竟然出了一个几何题?而且还把我好不容易升上绿的$Rating$又降回了蓝名...之后再不敢打$Wannafly$了. 由 ...

  4. Wannafly 挑战赛 19 参考题解

    这一次的 Wannafly 挑战赛题目是我出的,除了第一题,剩余的题目好像对大部分算法竞赛者来说好像都不是特别友好,但是个人感觉题目质量还是过得去的,下面是题目链接以及题解. [题目链接] Wanna ...

  5. Wannafly挑战赛21A

    题目链接 Wannafly挑战赛21A 题解 代码 #include <cstdio> #include <cmath> #define MAX 1000005 #define ...

  6. Wannafly挑战赛24游记

    Wannafly挑战赛24游记 A - 石子游戏 题目大意: A和B两人玩游戏,总共有\(n(n\le10^4)\)堆石子,轮流进行一些操作,不能进行下去的人则输掉这局游戏.操作包含以下两种: 把石子 ...

  7. Wannafly挑战赛25C 期望操作数

    Wannafly挑战赛25C 期望操作数 简单题啦 \(f[i]=\frac{\sum_{j<=i}f[j]}{i}+1\) \(f[i]=\frac{f[i]}{i}+\frac{\sum_{ ...

  8. Wannafly挑战赛18B 随机数

    Wannafly挑战赛18B 随机数 设\(f_i\)表示生成\(i\)个数有奇数个1的概率. 那么显而易见的递推式:\(f_i=p(1-f_{i-1})+(1-p)f_{i-1}=(1-2p)f_{ ...

  9. Wannafly挑战赛22游记

    Wannafly挑战赛22游记 幸运的人都是相似的,不幸的人各有各的不幸. --题记 A-计数器 题目大意: 有一个计数器,计数器的初始值为\(0\),每次操作你可以把计数器的值加上\(a_1,a_2 ...

随机推荐

  1. java project转变成java web project

    首先,你的eclipse必须得装有web插件 1.找到项目工作空间目录,打开.project文件,并修改文件, 修改如下:      找到:<natures> </natures&g ...

  2. CF851 C 暴力

    给出n个5维下的点,求点a不与其它任意的b,c重合,向量ab,ac的夹角都为钝角,这样的点个数,并打印它们. 转换二维下的求角度的函数为五维的,而且由于要求角度大于90度,在二维情况下最多有4个点,也 ...

  3. Codeforces Round #191 (Div. 2) B. Hungry Sequence(素数筛选法)

    . Hungry Sequence time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  4. 重构改善既有代码设计--重构手法10:Move Method (搬移函数)

    你的程序中,有个函数与其所驻类之外的另一个类进行更多的交流:调用后者,或被后者调用.在该函数最常用引用的类中建立一个有着类似行为的新函数.将旧函数编程一个单纯的委托函数,或是将旧函数完全移除. 动机: ...

  5. 在外网使用ssh连接内网中的多台Linux服务器

    最近因为要对全球工控机网络进行协议扫描,需要在实验室配置几台服务器,因为我们只有一个IP地址,所以是用路由器搭建了一个内网(拓扑结构如下图).但是这样做了之后无法在宿舍通过ssh直接连接服务器,因为那 ...

  6. Vue 使用自定义组件时报错:Uncaught TypeError: Cannot assign to read only property 'exports' of object '#<Object>'

    自己试做了一下vue的插件 参考element-ui: 写了一个组件 import message from './packages/message/index.js'; const install ...

  7. 怎么让IIS7第一次访问相应速度加快

    当我们把网站部署在IIS7或IIS6S的时候,每当IIS或是Application Pool重启后,第一次请求网站反应总是很慢,原因大家都知道(不知道可以参考这个动画说明ASP.NET网页第一个Req ...

  8. Mysql储存过程5: while

    循环结构 while create procedure name() begin while 条件 do SQL语句 end while; end$ create procedure aa6() be ...

  9. ASLR pe 分析

    ASLR 转:http://www.cnblogs.com/dliv3/p/6411814.html 3ks @author:dlive 微软从windows vista/windows server ...

  10. linux设置时区同步时间

    linux设置时区同步时间 一.运行tzselect sudo tzselect 在这里我们选择亚洲 Asia,确认之后选择中国(China),最后选择北京(Beijing) 如图:   二.复制文件 ...