chipmunk几何算法
/* Copyright (c) 2007 Scott Lembcke
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include "chipmunk_private.h"
void
cpMessage(const char *condition, const char *file, int line, cpBool isError, cpBool isHardError, const char *message, ...)
{
fprintf(stderr, (isError ? "Aborting due to Chipmunk error: " : "Chipmunk warning: "));
va_list vargs;
va_start(vargs, message); {
vfprintf(stderr, message, vargs);
fprintf(stderr, "\n");
} va_end(vargs);
fprintf(stderr, "\tFailed condition: %s\n", condition);
fprintf(stderr, "\tSource:%s:%d\n", file, line);
if(isError) abort();
}
#define STR(s) #s
#define XSTR(s) STR(s)
const char *cpVersionString = XSTR(CP_VERSION_MAJOR)"."XSTR(CP_VERSION_MINOR)"."XSTR(CP_VERSION_RELEASE);
void
cpInitChipmunk(void)
{
cpAssertWarn(cpFalse, "cpInitChipmunk is deprecated and no longer required. It will be removed in the future.");
}
//MARK: Misc Functions
cpFloat
cpMomentForCircle(cpFloat m, cpFloat r1, cpFloat r2, cpVect offset)
{
return m*(0.5f*(r1*r1 + r2*r2) + cpvlengthsq(offset));
}
cpFloat
cpAreaForCircle(cpFloat r1, cpFloat r2)
{
return (cpFloat)M_PI*cpfabs(r1*r1 - r2*r2);
}
cpFloat
cpMomentForSegment(cpFloat m, cpVect a, cpVect b)
{
cpVect offset = cpvmult(cpvadd(a, b), 0.5f);
return m*(cpvdistsq(b, a)/12.0f + cpvlengthsq(offset));
}
cpFloat
cpAreaForSegment(cpVect a, cpVect b, cpFloat r)
{
return r*((cpFloat)M_PI*r + 2.0f*cpvdist(a, b));
}
cpFloat
cpMomentForPoly(cpFloat m, const int numVerts, const cpVect *verts, cpVect offset)
{
cpFloat sum1 = 0.0f;
cpFloat sum2 = 0.0f;
for(int i=0; i<numVerts; i++){
cpVect v1 = cpvadd(verts[i], offset);
cpVect v2 = cpvadd(verts[(i+1)%numVerts], offset);
cpFloat a = cpvcross(v2, v1);
cpFloat b = cpvdot(v1, v1) + cpvdot(v1, v2) + cpvdot(v2, v2);
sum1 += a*b;
sum2 += a;
}
return (m*sum1)/(6.0f*sum2);
}
cpFloat
cpAreaForPoly(const int numVerts, const cpVect *verts)
{
cpFloat area = 0.0f;
for(int i=0; i<numVerts; i++){
area += cpvcross(verts[i], verts[(i+1)%numVerts]);
}
return -area/2.0f;
}
cpVect
cpCentroidForPoly(const int numVerts, const cpVect *verts)
{
cpFloat sum = 0.0f;
cpVect vsum = cpvzero;
for(int i=0; i<numVerts; i++){
cpVect v1 = verts[i];
cpVect v2 = verts[(i+1)%numVerts];
cpFloat cross = cpvcross(v1, v2);
sum += cross;
vsum = cpvadd(vsum, cpvmult(cpvadd(v1, v2), cross));
}
return cpvmult(vsum, 1.0f/(3.0f*sum));
}
void
cpRecenterPoly(const int numVerts, cpVect *verts){
cpVect centroid = cpCentroidForPoly(numVerts, verts);
for(int i=0; i<numVerts; i++){
verts[i] = cpvsub(verts[i], centroid);
}
}
cpFloat
cpMomentForBox(cpFloat m, cpFloat width, cpFloat height)
{
return m*(width*width + height*height)/12.0f;
}
cpFloat
cpMomentForBox2(cpFloat m, cpBB box)
{
cpFloat width = box.r - box.l;
cpFloat height = box.t - box.b;
cpVect offset = cpvmult(cpv(box.l + box.r, box.b + box.t), 0.5f);
// TODO NaN when offset is 0 and m is INFINITY
return cpMomentForBox(m, width, height) + m*cpvlengthsq(offset);
}
//MARK: Quick Hull
void
cpLoopIndexes(cpVect *verts, int count, int *start, int *end)
{
(*start) = (*end) = 0;
cpVect min = verts[0];
cpVect max = min;
for(int i=1; i<count; i++){
cpVect v = verts[i];
if(v.x < min.x || (v.x == min.x && v.y < min.y)){
min = v;
(*start) = i;
} else if(v.x > max.x || (v.x == max.x && v.y > max.y)){
max = v;
(*end) = i;
}
}
}
#define SWAP(__A__, __B__) {cpVect __TMP__ = __A__; __A__ = __B__; __B__ = __TMP__;}
static int
QHullPartition(cpVect *verts, int count, cpVect a, cpVect b, cpFloat tol)
{
if(count == 0) return 0;
cpFloat max = 0;
int pivot = 0;
cpVect delta = cpvsub(b, a);
cpFloat valueTol = tol*cpvlength(delta);
int head = 0;
for(int tail = count-1; head <= tail;){
cpFloat value = cpvcross(delta, cpvsub(verts[head], a));
if(value > valueTol){
if(value > max){
max = value;
pivot = head;
}
head++;
} else {
SWAP(verts[head], verts[tail]);
tail--;
}
}
// move the new pivot to the front if it's not already there.
if(pivot != 0) SWAP(verts[0], verts[pivot]);
return head;
}
static int
QHullReduce(cpFloat tol, cpVect *verts, int count, cpVect a, cpVect pivot, cpVect b, cpVect *result)
{
if(count < 0){
return 0;
} else if(count == 0) {
result[0] = pivot;
return 1;
} else {
int left_count = QHullPartition(verts, count, a, pivot, tol);
int index = QHullReduce(tol, verts + 1, left_count - 1, a, verts[0], pivot, result);
result[index++] = pivot;
int right_count = QHullPartition(verts + left_count, count - left_count, pivot, b, tol);
return index + QHullReduce(tol, verts + left_count + 1, right_count - 1, pivot, verts[left_count], b, result + index);
}
}
// QuickHull seemed like a neat algorithm, and efficient-ish for large input sets.
// My implementation performs an in place reduction using the result array as scratch space.
int
cpConvexHull(int count, cpVect *verts, cpVect *result, int *first, cpFloat tol)
{
if(result){
// Copy the line vertexes into the empty part of the result polyline to use as a scratch buffer.
memcpy(result, verts, count*sizeof(cpVect));
} else {
// If a result array was not specified, reduce the input instead.
result = verts;
}
// Degenerate case, all poins are the same.
int start, end;
cpLoopIndexes(verts, count, &start, &end);
if(start == end){
if(first) (*first) = 0;
return 1;
}
SWAP(result[0], result[start]);
SWAP(result[1], result[end == 0 ? start : end]);
cpVect a = result[0];
cpVect b = result[1];
if(first) (*first) = start;
int resultCount = QHullReduce(tol, result + 2, count - 2, a, b, a, result + 1) + 1;
cpAssertSoft(cpPolyValidate(result, resultCount),
"Internal error: cpConvexHull() and cpPolyValidate() did not agree."
"Please report this error with as much info as you can.");
return resultCount;
}
//MARK: Alternate Block Iterators
#if defined(__has_extension)
#if __has_extension(blocks)
static void IteratorFunc(void *ptr, void (^block)(void *ptr)){block(ptr);}
void cpSpaceEachBody_b(cpSpace *space, void (^block)(cpBody *body)){
cpSpaceEachBody(space, (cpSpaceBodyIteratorFunc)IteratorFunc, block);
}
void cpSpaceEachShape_b(cpSpace *space, void (^block)(cpShape *shape)){
cpSpaceEachShape(space, (cpSpaceShapeIteratorFunc)IteratorFunc, block);
}
void cpSpaceEachConstraint_b(cpSpace *space, void (^block)(cpConstraint *constraint)){
cpSpaceEachConstraint(space, (cpSpaceConstraintIteratorFunc)IteratorFunc, block);
}
static void BodyIteratorFunc(cpBody *body, void *ptr, void (^block)(void *ptr)){block(ptr);}
void cpBodyEachShape_b(cpBody *body, void (^block)(cpShape *shape)){
cpBodyEachShape(body, (cpBodyShapeIteratorFunc)BodyIteratorFunc, block);
}
void cpBodyEachConstraint_b(cpBody *body, void (^block)(cpConstraint *constraint)){
cpBodyEachConstraint(body, (cpBodyConstraintIteratorFunc)BodyIteratorFunc, block);
}
void cpBodyEachArbiter_b(cpBody *body, void (^block)(cpArbiter *arbiter)){
cpBodyEachArbiter(body, (cpBodyArbiterIteratorFunc)BodyIteratorFunc, block);
}
static void NearestPointQueryIteratorFunc(cpShape *shape, cpFloat distance, cpVect point, cpSpaceNearestPointQueryBlock block){block(shape, distance, point);}
void cpSpaceNearestPointQuery_b(cpSpace *space, cpVect point, cpFloat maxDistance, cpLayers layers, cpGroup group, cpSpaceNearestPointQueryBlock block){
cpSpaceNearestPointQuery(space, point, maxDistance, layers, group, (cpSpaceNearestPointQueryFunc)NearestPointQueryIteratorFunc, block);
}
static void SegmentQueryIteratorFunc(cpShape *shape, cpFloat t, cpVect n, cpSpaceSegmentQueryBlock block){block(shape, t, n);}
void cpSpaceSegmentQuery_b(cpSpace *space, cpVect start, cpVect end, cpLayers layers, cpGroup group, cpSpaceSegmentQueryBlock block){
cpSpaceSegmentQuery(space, start, end, layers, group, (cpSpaceSegmentQueryFunc)SegmentQueryIteratorFunc, block);
}
void cpSpaceBBQuery_b(cpSpace *space, cpBB bb, cpLayers layers, cpGroup group, cpSpaceBBQueryBlock block){
cpSpaceBBQuery(space, bb, layers, group, (cpSpaceBBQueryFunc)IteratorFunc, block);
}
static void ShapeQueryIteratorFunc(cpShape *shape, cpContactPointSet *points, cpSpaceShapeQueryBlock block){block(shape, points);}
cpBool cpSpaceShapeQuery_b(cpSpace *space, cpShape *shape, cpSpaceShapeQueryBlock block){
return cpSpaceShapeQuery(space, shape, (cpSpaceShapeQueryFunc)ShapeQueryIteratorFunc, block);
}
#endif
#endif
#include "chipmunk_ffi.h"
chipmunk几何算法的更多相关文章
- 数据结构(DataStructure)与算法(Algorithm)、STL应用
catalogue . 引论 . 数据结构的概念 . 逻辑结构实例 2.1 堆栈 2.2 队列 2.3 树形结构 二叉树 . 物理结构实例 3.1 链表 单向线性链表 单向循环链表 双向线性链表 双向 ...
- C 实现的算法篇
算法的定义:算法是解决实际问题的一种精确的描述方法,目前,广泛认同的定义是:算法的模型分析的一组可行的确定的和有穷的规则 算法的五个特性:有穷性,确切性,输入,输出,可行性.目前算法的可执行的步骤非常 ...
- (Step1-500题)UVaOJ+算法竞赛入门经典+挑战编程+USACO
http://www.cnblogs.com/sxiszero/p/3618737.html 下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年 ...
- 算法竞赛入门经典+挑战编程+USACO
下面给出的题目共计560道,去掉重复的也有近500题,作为ACMer Training Step1,用1年到1年半年时间完成.打牢基础,厚积薄发. 一.UVaOJ http://uva.onlinej ...
- JS算法之A*(A星)寻路算法
今天写一个连连看的游戏的时候,接触到了一些寻路算法,我就大概讲讲其中的A*算法. 这个是我学习后的一点个人理解,有错误欢迎各位看官指正. 寻路模式主要有三种:广度游戏搜索.深度优先搜索和启发式搜索. ...
- 算法 A-Star(A星)寻路
一.简介 在游戏中,有一个很常见地需求,就是要让一个角色从A点走向B点,我们期望是让角色走最少的路.嗯,大家可能会说,直线就是最短的.没错,但大多数时候,A到B中间都会出现一些角色无法穿越的东西,比如 ...
- Cesium原理篇:GroundPrimitive
今天来看看GroundPrimitive,选择GroundPrimitive有三个目的:1 了解GroundPrimitive和Primitive的区别和关系 2 createGeometry的特殊处 ...
- OpneCv2.x 模块结构
转自:http://blog.csdn.net/huang9012/article/details/21811271 之前啃了不少OpenCV的官方文档,发现如果了解了一些OpenCV整体的模块架构后 ...
- 学习 opencv---(1) opencv3.1.0 组件结构浅析
本系列是根据 浅墨大神 的opencv系列而写的,,应该大部分内容会一样..如有侵权还请告知........... 开发环境:win7 + VS2013 + opencv3.1.0 至于OpenCV组 ...
随机推荐
- SSH(安全协议外壳)介绍及Linux SSH免密登录
SSH(安全外壳协议) SSH 为 Secure Shell 的缩写,是一种网络安全协议,专为远程登录会话和其他网络服务提供安全性的协议.通过使用 SSH,可以把传输的数据进行加密,有效防止远程管理过 ...
- Python爬虫入门二之爬虫基础了解
1.什么是爬虫 爬虫,即网络爬虫,大家可以理解为在网络上爬行的一直蜘蛛,互联网就比作一张大网,而爬虫便是在这张网上爬来爬去的蜘蛛咯,如果它遇到资源,那么它就会抓取下来.想抓取什么?这个由你来控制它咯. ...
- [Fiddler]如何让Fiddler可以抓取https的请求
Fiddler通过在本机开启了一个http的代理服务器来进行http请求和响应转发,默认情况下,并不能抓取https的请求.下面小编就来介绍下,如何用fiddler来抓取https的请求. 1.打开F ...
- IntelliJ IDEA开发golang环境配置
IntelliJ IDEA开发golang环境配置 首先把GO安装好...(自行安装,附上一篇我之前写的MAC安装GO) 安装IntelliJ IDEA,下载地址: https://www.jetbr ...
- 10个最新手机美食APP界面设计欣赏
移动软件时代,简单下载美食app,动动手指,滑动几下手机屏幕,即可足不出户,搜索,预定和购买各路美食.然而,对于作为手机app UI 界面设计师的你来说,最大的问题并不在于如何使用这些美食软件来方便生 ...
- java重载方法的二义性
http://blog.csdn.net/lavor_zl/article/details/40746813
- 手机优秀app
Mantano 阅读器 Aldiko 阅读器 掌阅阅读器 奇特阅读器 Gitden reader 网易蜗牛阅读
- 说说JVM中的操作码
JVM操作码 加载与存储操作码 load --从局部变量加载值到栈上 ldc --从池中加载常量到栈上 store --把值从栈中移走,存到局部变量中 dup --复制栈顶的值 getField -- ...
- 我的CSS3学习笔记
1.元字符使用: []: 全部可选项 ||:并列 |:多选一 ?: 0个或者一个 *:0个或者多个 {}: 范围 2.CSS3属性选择器: E[attr]:存在attr属性即可: E[attr=val ...
- ARM启动代码中_main 与用户主程序main()的区别
1.1 问题描述 __main函数的作用是什么呀?1.2 问题剖析 __main函数是C/C++运行时库的一个函数,嵌入式系统在进入应用主程序之前必须有一个初始化的过程,使用__m ...