因为每行必须走完才能到下一行,所以我们有两种决策:

1、最后留在线段左端点

2、最后留在线段右端点

这种存在状态转移且多决策的问题用动态规划来进行递推是最好不过的了。

所以我们设\(dp[i][0/1]\)来表示在第\(i\)行最后留在左/右端点的行走路径最小值。然后设\(sum[0/1][0/1]\)来表示相邻行左右端点之间的距离。(0表示左端点,1表示右端点)

然后很容易就知道状态转移的式子:

\(dp[i][0]=min(dp[i-1][0]+1+dis[0][0],dp[i-1][1]+1+dis[1][0])\)

\(dp[i][1]=min(dp[i-1][0]+1+dis[0][1],dp[i-1][1]+1+dis[1][1])\)

然后就是注意相邻两行左右端点之间的距离是存在3*2种分类讨论情况的(具体操作见代码)。

我的思路可能有点麻烦了,所以代码写的也有点长,但是自我认为超级暴力超级清楚。。。。。

以下是代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define MAXN 20010
#define int long long
using namespace std;
int n;
int dp[MAXN][2],dis[2][2],l[MAXN],r[MAXN];
//dis[0][0] left->left
//dis[0][1] left->right
//dis[1][0] right->left
//dis[1][1] right->right
int ans;
signed main()
{
scanf("%lld",&n);
for(int i=1;i<=n;i++)
scanf("%lld%lld",&l[i],&r[i]);
l[0]=r[0]=1;
l[n+1]=r[n+1]=n;
for(int i=1;i<=n+1;i++)
{
if(l[i-1]<l[i])
dis[0][0]=r[i]-l[i-1]+r[i]-l[i],dis[0][1]=r[i]-l[i-1];
else if(l[i-1]>r[i])
dis[0][0]=l[i-1]-l[i],dis[0][1]=r[i]-l[i]+l[i-1]-l[i];
else
dis[0][0]=2*r[i]-l[i-1]-l[i],dis[0][1]=l[i-1]-l[i]+r[i]-l[i];
//the last position of the point is on the left
if(r[i-1]<l[i])
dis[1][0]=r[i]-r[i-1]+r[i]-l[i],dis[1][1]=r[i]-r[i-1];
else if(r[i-1]>r[i])
dis[1][0]=r[i-1]-l[i],dis[1][1]=r[i-1]-l[i]+r[i]-l[i];
else
dis[1][0]=r[i]-r[i-1]+r[i]-l[i],dis[1][1]=r[i-1]-l[i]+r[i]-l[i];
//the last position of the point is on the right
dp[i][0]=min(dp[i-1][0]+1+dis[0][0],dp[i-1][1]+1+dis[1][0]);
dp[i][1]=min(dp[i-1][0]+1+dis[0][1],dp[i-1][1]+1+dis[1][1]);
}
printf("%lld\n",min(dp[n+1][0],dp[n+1][1])-2);
return 0;
}

[TJOI2007] 线段的更多相关文章

  1. luogu [TJOI2007]线段

    题目链接 luogu [TJOI2007]线段 题解 dp[i][0/1]第i行在左/右端点的最短路 瞎转移 代码 #include<bits/stdc++.h> using namesp ...

  2. 【洛谷 P3842】[TJOI2007]线段(DP)

    裸DP.感觉楼下的好复杂,我来补充一个易懂的题解. f[i][0]表示走完第i行且停在第i行的左端点最少用的步数 f[i][1]同理,停在右端点的最少步数. 那么转移就很简单了,走完当前行且停到左端点 ...

  3. P3842 [TJOI2007]线段

    最近多刷些dp,觉得这个算不上蓝题   在一个\(n\times n\)的平面上,在每一行中有一条线段,第\(i\)行的线段的左端点是\((i, L_i)\),右端点是\((i, R_i)\),其中\ ...

  4. [TJOI2007] 线段 (动态规划)

    题目链接 Solution 传统的线性 \(dp\) . \(f[i][0]\),\(f[i][1]\) 分别表示最后一次在 \(i\) ,然后在 左边或者右边的最小步数. 然后就每次根据上一次左边和 ...

  5. DP擎天

    DP! 黄题: 洛谷P2101 命运石之门的选择 假装是DP(分治 + ST表) CF 982C Cut 'em all! 树形贪心 洛谷P1020 导弹拦截 单调队列水题 绿题: 洛谷P1594 护 ...

  6. NOIP前刷题记录

    因为本蒻实在太蒻了...对于即将到来的NOIP2018ssfd,所以下决心要把自己近期做过的题目(衡量标准为洛谷蓝题难度或以上)整理一下,归归类,简单地写一下思路,就当作自己复习了吧qwq 本随笔持续 ...

  7. NOIP刷题

    搜索 [NOIP2013]华容道 最短路+带剪枝的搜索,是一个思维难度比较大的题目. CF1064D Labyrinth 考虑贪心,用双向队列bfs [NOIP2017]宝藏 剪枝搜索出奇迹 题解:h ...

  8. NOIpDairy

    Day 0 水水比赛 Day 1 写写Dp Part1:Dp基础练习 [HNOI2002]公交车路线 秒切,点数这么少,N这么大,目测O(N)+暴力更新 5min写完 P3842 [TJOI2007] ...

  9. DP百题练(一)

    目录 DP百题练(一) 线性 DP 简述 Arithmetic Progressions [ZJOI2006]物流运输 LG1095 守望者的逃离 LG1103 书本整理 CH5102 移动服务 LG ...

随机推荐

  1. Shell32.ShellClass服务器操作系统无法获取 音频文件时长问题

    前言: 上传音频文件,自动写入此音频文件的时长,这里用 COM组件Microsoft Shell Controls And Automation来实现. 首先 1.引用:Microsoft Shell ...

  2. LeetCode之动态规划

    62. Unique Paths QuestionEditorial Solution Total Accepted: 86710 Total Submissions: 239084 Difficul ...

  3. git 转移

    git push --mirror https://github.com/cloud-pi/drbd-docker-plugin.git

  4. 云计算 Restfull API 设计之旅

    http://fedoraproject.org/wiki/Cloud_APIs_REST_Style_Guide#Introduction_to_REST   http://docs.spring. ...

  5. Android代码速查,写给新手的朋友们[转]

    原文地址:http://www.open-open.com/lib/view/open1397286499090.html 0 android 创建按钮 Button button = new But ...

  6. SQL游标 数据库编程样例

    --处理file与folder中的order -- 声明变量 DECLARE @fileid AS INT, @folderid AS INT, @order AS INT, @oldFolderId ...

  7. PCA 学习笔记

    先简单记下,等有时间再整理 PCA 主要思想,把 协方差矩阵 对角化,协方差矩阵是实对称的.里面涉及到矩阵论的一点基础知识: 基变换: Base2 = P · Base1 相应的 坐标变换 P · c ...

  8. Spring5源码解析-论Spring DispatcherServlet的生命周期

    Spring Web框架架构的主要部分是DispatcherServlet.也就是本文中重点介绍的对象. 在本文的第一部分中,我们将看到基于Spring的DispatcherServlet的主要概念: ...

  9. exp,expdb,imp,impdb的使用

    1.使用expdp要先在数据库中创建directory,并给相应的用户read,write权限. SQL>create dexp和empdp的区别irectory dmpdir as ‘/u01 ...

  10. java中super的用法

    在Java中,super关键字有2个用法,一个是访问父类的函数,一个是访问父类的变量,总体来说,就是一个功能,访问父类的成员. 代码如下: class Person { String name ; i ...