[TJOI2007] 线段
因为每行必须走完才能到下一行,所以我们有两种决策:
1、最后留在线段左端点
2、最后留在线段右端点
这种存在状态转移且多决策的问题用动态规划来进行递推是最好不过的了。
所以我们设\(dp[i][0/1]\)来表示在第\(i\)行最后留在左/右端点的行走路径最小值。然后设\(sum[0/1][0/1]\)来表示相邻行左右端点之间的距离。(0表示左端点,1表示右端点)
然后很容易就知道状态转移的式子:
\(dp[i][0]=min(dp[i-1][0]+1+dis[0][0],dp[i-1][1]+1+dis[1][0])\)
\(dp[i][1]=min(dp[i-1][0]+1+dis[0][1],dp[i-1][1]+1+dis[1][1])\)
然后就是注意相邻两行左右端点之间的距离是存在3*2种分类讨论情况的(具体操作见代码)。
我的思路可能有点麻烦了,所以代码写的也有点长,但是自我认为超级暴力超级清楚。。。。。
以下是代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define MAXN 20010
#define int long long
using namespace std;
int n;
int dp[MAXN][2],dis[2][2],l[MAXN],r[MAXN];
//dis[0][0] left->left
//dis[0][1] left->right
//dis[1][0] right->left
//dis[1][1] right->right
int ans;
signed main()
{
scanf("%lld",&n);
for(int i=1;i<=n;i++)
scanf("%lld%lld",&l[i],&r[i]);
l[0]=r[0]=1;
l[n+1]=r[n+1]=n;
for(int i=1;i<=n+1;i++)
{
if(l[i-1]<l[i])
dis[0][0]=r[i]-l[i-1]+r[i]-l[i],dis[0][1]=r[i]-l[i-1];
else if(l[i-1]>r[i])
dis[0][0]=l[i-1]-l[i],dis[0][1]=r[i]-l[i]+l[i-1]-l[i];
else
dis[0][0]=2*r[i]-l[i-1]-l[i],dis[0][1]=l[i-1]-l[i]+r[i]-l[i];
//the last position of the point is on the left
if(r[i-1]<l[i])
dis[1][0]=r[i]-r[i-1]+r[i]-l[i],dis[1][1]=r[i]-r[i-1];
else if(r[i-1]>r[i])
dis[1][0]=r[i-1]-l[i],dis[1][1]=r[i-1]-l[i]+r[i]-l[i];
else
dis[1][0]=r[i]-r[i-1]+r[i]-l[i],dis[1][1]=r[i-1]-l[i]+r[i]-l[i];
//the last position of the point is on the right
dp[i][0]=min(dp[i-1][0]+1+dis[0][0],dp[i-1][1]+1+dis[1][0]);
dp[i][1]=min(dp[i-1][0]+1+dis[0][1],dp[i-1][1]+1+dis[1][1]);
}
printf("%lld\n",min(dp[n+1][0],dp[n+1][1])-2);
return 0;
}
[TJOI2007] 线段的更多相关文章
- luogu [TJOI2007]线段
题目链接 luogu [TJOI2007]线段 题解 dp[i][0/1]第i行在左/右端点的最短路 瞎转移 代码 #include<bits/stdc++.h> using namesp ...
- 【洛谷 P3842】[TJOI2007]线段(DP)
裸DP.感觉楼下的好复杂,我来补充一个易懂的题解. f[i][0]表示走完第i行且停在第i行的左端点最少用的步数 f[i][1]同理,停在右端点的最少步数. 那么转移就很简单了,走完当前行且停到左端点 ...
- P3842 [TJOI2007]线段
最近多刷些dp,觉得这个算不上蓝题 在一个\(n\times n\)的平面上,在每一行中有一条线段,第\(i\)行的线段的左端点是\((i, L_i)\),右端点是\((i, R_i)\),其中\ ...
- [TJOI2007] 线段 (动态规划)
题目链接 Solution 传统的线性 \(dp\) . \(f[i][0]\),\(f[i][1]\) 分别表示最后一次在 \(i\) ,然后在 左边或者右边的最小步数. 然后就每次根据上一次左边和 ...
- DP擎天
DP! 黄题: 洛谷P2101 命运石之门的选择 假装是DP(分治 + ST表) CF 982C Cut 'em all! 树形贪心 洛谷P1020 导弹拦截 单调队列水题 绿题: 洛谷P1594 护 ...
- NOIP前刷题记录
因为本蒻实在太蒻了...对于即将到来的NOIP2018ssfd,所以下决心要把自己近期做过的题目(衡量标准为洛谷蓝题难度或以上)整理一下,归归类,简单地写一下思路,就当作自己复习了吧qwq 本随笔持续 ...
- NOIP刷题
搜索 [NOIP2013]华容道 最短路+带剪枝的搜索,是一个思维难度比较大的题目. CF1064D Labyrinth 考虑贪心,用双向队列bfs [NOIP2017]宝藏 剪枝搜索出奇迹 题解:h ...
- NOIpDairy
Day 0 水水比赛 Day 1 写写Dp Part1:Dp基础练习 [HNOI2002]公交车路线 秒切,点数这么少,N这么大,目测O(N)+暴力更新 5min写完 P3842 [TJOI2007] ...
- DP百题练(一)
目录 DP百题练(一) 线性 DP 简述 Arithmetic Progressions [ZJOI2006]物流运输 LG1095 守望者的逃离 LG1103 书本整理 CH5102 移动服务 LG ...
随机推荐
- Spring 学习记录5 BeanFactory
主题 记录我对BeanFactor接口的简单的学习. BeanFactory我感觉就是管理bean用的容器,持有一堆的bean,你可以get各种bean.然后也提供一些bean相关的功能比如别名呀之类 ...
- 用jQuery获取table中行id和td值
<%@ page language="java" pageEncoding="UTF-8"%> <% String path = reques ...
- WCF配置多个终节点
配置多个终节点的意义(自己理解):一个服务可以有多个终节点,网上也经常有人说终节点才是服务的真正的接口,的确如此,当我们为一个服务配置多个终节点时,就表明这个服务可以被以不同的方式访问(不同的绑定等等 ...
- PencilWang博客目录
在这里有一坨目录,以后自己和别人看随笔都会方便很多 一 .刷题相关 1.BZOJ BZOJ1001(最大流,最短路)(EASY+) BZOJ1002(数学)(NORMAL+) BZOJ1003( ...
- $(window).load()和$(document).ready()
一.前言 我们在编写前端代码的js文件时,往往是会先写一个$(function(){}),然后才会在大括号里面继续写我们自己的代码.当时并不能理解为什么要添加这样一个东西,只是把它当做一个标签一样添加 ...
- 关于dojo自定义类
dojo自定义类时,只要没有在constructor函数中传参改变的变量,都属于静态变量,因此不能用this.访问,而是直接用变量名访问
- Java 面试知识点汇总
OOP:(Object Oriented Programming )面向对象编程 重用性.灵活性和扩展性 高内聚.低耦合 面向过程编程与面向对象编程的区别:举例,自己做饭吃与去饭馆吃,去饭馆只需要知道 ...
- 解决VS2013中的控制台一闪而过的问题
修改项目配置,右键点击项目,在右键菜单中选择属性,然后在弹出的对话框左侧列表中中选择 “配置属性”-->“链接器”-->“系统”,然后在右侧的列表中, 在第一项”子系统“的值中选择”控制台 ...
- 快速搭建Wordpress
1. 下载:ZentaoPMS作为Mysql Apach Php的基础环境: 2. 下载:Wordpress安装包: 3. 将Wordpress解压,放置于ZentaoPMS的Xampp的htdocs ...
- 将windows上面的项目拷贝到Linux环境下报错不能够找到对应的表com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Table 'puyang.ServiceType' doesn't exist
将一模一样的项目从win迁移到到linux上报错: 一开始还是以为是linux不能识别hql语句,查找资料发现是因为Liunx服务器上mysql是区分大小写的,而本地是不区分的如:代码是这样写的 @E ...