https://www.luogu.org/problemnew/show/CF859C

Description

有一个长度为\(n\)的序列,Alice和Bob在玩游戏。Bob先手掌握决策权。

他们从左向右扫整个序列,在任意时刻,拥有决策权的人有如下两个选择:

将当前的数加到自己的得分中,并将决策权给对方,对方将获得下一个数的决策权

将当前的数加到对方的得分中,并将决策权保留给自己,自己将获得下一个数的决策权

假定他们都使用最优策略,求他们最后分别能获得多少分

Input

第一行是一个整数\(n\)代表序列长度

第二行有\(n\)个用空格隔开的整数,代表这个序列

Output

输出一行两个用空格隔开的整数,代表Alice和Bob的最终得分

Hint

\(Forall:\)

\(0~\leq~n~\leq~50\)。

若设序列为\(a\),则\(1~\leq~a_i~\leq~100000\)

Solution

傻逼数据范围给了50……看着题目想折半搜索想了半天,搜了下题解发现是\(O(n)\)的DP……那你给我50的范围是要干嘛啊emmmm

考虑正着dp,设\(f_i\)为前\(i\)个数的ans,于是发现并不能转移,因为填表转移时是对手和你一起决策,一个取max一个取min显然没法做。填表法并不能记录这个状态是先手的还是后手的,记录先后手也不能做。

于是考虑倒着做,设\(f_i\)为从\(i\)开始选一直选到\(n\),发现这样的决策是自己一个人做最优决策,转移到下一维的最大值即可。方程显然:

\[f_i~=~\max(f_{i+1}~,sum_{i}-f_{i+1})
\]

其中\(sum\)代表后缀和

Code

#include <cstdio>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long typedef long long int ll; namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if(front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if(front == end) return -1;
}
return *(front++);
}
} template <typename T>
inline void qr(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if(lst == '-') x = -x;
} template <typename T>
inline void ReadDb(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if(ch == '.') {
ch = IPT::GetChar();
double base = 1;
while((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if(lst == '-') x = -x;
} namespace OPT {
char buf[120];
} template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if(x < 0) {x = -x, putchar('-');}
rg int top=0;
do {OPT::buf[++top] = x % 10 + '0';} while( x /= 10);
while(top) putchar(OPT::buf[top--]);
if(pt) putchar(aft);
} const int maxn = 55; int n;
int MU[maxn], sum[maxn], frog[maxn]; int main() {
freopen("1.in","r",stdin);
qr(n);
for(rg int i = 1; i <= n; ++i) qr(MU[i]);
for(rg int i = n; i; --i) sum[i] = sum[i+1] + MU[i];
for(rg int i = n; i; --i) frog[i] = std::max(frog[i+1], sum[i] - frog[i+1]);
qw(sum[1] - frog[1], ' ', true);qw(frog[1], '\n', true);
return 0;
}

Summary

正着不能DP时,考虑反着做

【DP】CF859C Pie Rules的更多相关文章

  1. HDOJ_1087_Super Jumping! Jumping! Jumping! 【DP】

    HDOJ_1087_Super Jumping! Jumping! Jumping! [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  2. Kattis - honey【DP】

    Kattis - honey[DP] 题意 有一只蜜蜂,在它的蜂房当中,蜂房是正六边形的,然后它要出去,但是它只能走N步,第N步的时候要回到起点,给出N, 求方案总数 思路 用DP 因为N == 14 ...

  3. HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】

    HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...

  4. HDOJ 1501 Zipper 【DP】【DFS+剪枝】

    HDOJ 1501 Zipper [DP][DFS+剪枝] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...

  5. HDOJ 1257 最少拦截系统 【DP】

    HDOJ 1257 最少拦截系统 [DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...

  6. HDOJ 1159 Common Subsequence【DP】

    HDOJ 1159 Common Subsequence[DP] Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  7. POJ_2533 Longest Ordered Subsequence【DP】【最长上升子序列】

    POJ_2533 Longest Ordered Subsequence[DP][最长递增子序列] Longest Ordered Subsequence Time Limit: 2000MS Mem ...

  8. HackerRank - common-child【DP】

    HackerRank - common-child[DP] 题意 给出两串长度相等的字符串,找出他们的最长公共子序列e 思路 字符串版的LCS AC代码 #include <iostream&g ...

  9. LeetCode:零钱兑换【322】【DP】

    LeetCode:零钱兑换[322][DP] 题目描述 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成 ...

随机推荐

  1. JUC——线程同步锁(锁处理机制简介)

    锁处理机制简介 juc的开发框架解决的核心问题是并发访问和数据安全操作问题,当进行并发访问的时候如果对于锁的控制不当,就会造成死锁这样的阻塞问题. 为了解决这样的缺陷,juc里面重新针对于锁的概念进行 ...

  2. spring cloud 入门系列七:基于Git存储的分布式配置中心--Spring Cloud Config

    我们前面接触到的spring cloud组件都是基于Netflix的组件进行实现的,这次我们来看下spring cloud 团队自己创建的一个全新项目:Spring Cloud Config.它用来为 ...

  3. VMware安装的Windows10下Docker的安装

    1.前言 开启学习Docker之旅,首先在VMware中安装了windows10,因为Docker for windows要Win10专业或者企业版,现在台式机是win7,不想动主机系统.嘻嘻 不过, ...

  4. loadrunner处理https请求

    录制到的脚本如下: login() { lr_think_time(10); web_url("verifycode.jsp", "URL=https://192.168 ...

  5. sprint3最终演示及团队贡献分

    团队名:在考虑 团队项目:复利计算 项目演示: 之前的功能都有演示过就不再一一截图,把我们新增加的功能说一下 首先用户进入我们的网页可以登录或者注册,注册的用户可以直接输入用户名及密码登录,没有注册的 ...

  6. Fiveplus--王者光耀1

    **光耀101** 汇总博客: 关文涛: 博客地址:随笔1 随笔2 杨蓝婷: 博客地址:随笔1 随笔2 蔡雅菁: 博客地址:随笔1 随笔2 黄森敏: 博客地址:随笔1 随笔2 林兴源: 博客地址:随笔 ...

  7. 第11章 认识和学习bash

    认识bash这个shell 硬件.内核和shell 用户操作计算机流程如下: 用户——>用户界面(shell,KDE,application)——>核心(kernel)——>硬件(h ...

  8. Java & hashCode作用

    首先,想要明白hashCode的作用,你必须要先知道Java中的集合. 总的来说,Java中的集合(Collection)有两类,一类是List,再有一类是Set.你知道它们的区别吗?前者集合内的元素 ...

  9. golang中的检验hash

    1.对字符串进行hash 大家可以看一下, SHA1 Hashes Go by Example写道: The pattern for generating a hash is sha1.New(), ...

  10. 【第五周】alpha发布之小组评论

    对于昨天的阿尔法发布,有那么几点需要说一下: 1,对这次阿尔法发布的过程,我们组还是基本顺利的,由于之前吃过亏,这次我提前试用了一下投影仪,做了些调试,之后的发布过程起码设备上是正常的. 2,我们的项 ...