Day 2 T1
题目描述
组合数表示的是从n个物品中选出m个物品的方案数。举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法。根据组合数的定 义,我们可以给出计算组合数的一般公式:
其中n! = 1 × 2 × · · · × n
小葱想知道如果给定n,m和k,对于所有的0 <= i <= n,0 <= j <= min(i,m)有多少对 (i,j)满足是k的倍数。
输入输出格式
输入格式:
第一行有两个整数t,k,其中t代表该测试点总共有多少组测试数据,k的意义见 【问题描述】。
接下来t行每行两个整数n,m,其中n,m的意义见【问题描述】。
输出格式:
t行,每行一个整数代表答案。
输入输出样例
1 2
3 3
1
2 5
4 5
6 7
0
7
说明
【样例1说明】
在所有可能的情况中,只有是2的倍数。
【子任务】

//这个方法比较简单
//由组合数可知,c(m,n)=(n-m+1)!/(m!) ,那么要想组合数能整除k,就必须统计k的质因数 是否包涵与c的质因数。
// 用g[i]表示i中k的质因数个数
// 用f[i]表示i!中k的质因数个数
//因为2-21 中k能分解成两种不同的质因数,所以有g2,f2
//用 z[i][j]代表 c(1到j,i)中能被k整除的个数
//用 u[i][j]代表 c(1到j,1到i)中能被k整除的个数 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <string.h>
using namespace std;
int read() //读入优化
{
int in=,k=;char c=getchar();
for(;c>''||c<'';c=getchar()) if(c=='-') k=-;
for(;c<=''&&c>='';c=getchar())
in=in*+c-'';
return k*in;
}
int k,k2,nk,nk2,n,m,all,g[],g2[],jy[][]; int a[],f[],f2[],t,qu[][],maxn=; bool check(int n,int m) //判断组合数 C(m,n) 是否能被k整除
{
int a=f[n]-f[n-m+-];
int b=f[m];
int c=f2[n]-f2[n-m+-];
int d=f2[m];
if(a-b>=nk&&c-d>=nk2)
{
return ;
}else
return ;
} int h[][],u[][],maxm,z[][];
int main()
{
// freopen("problem.in","r",stdin);
// freopen("problem.out","w",stdout);
scanf("%d%d",&t,&k); if(k==) k=,k2=,nk=,nk2=; //打表爆力分解质因数 分成 k,k2
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=;
else if(k==) k=,k2=,nk=,nk2=; for(int i=;i<=t;i++)
{
qu[i][]=read();
qu[i][]=read();
qu[i][]=min(qu[i][],qu[i][]);
if(qu[i][]<qu[i][]) qu[i][]=qu[i][];
if(qu[i][]>maxn) maxn=qu[i][];
if(qu[i][]>maxm) maxm=qu[i][];
}
//计算1到最大n 的每个数中有k 有多少个
for(int i=;i<=maxn;i++)
{
int j=,q=i;
while(q%k==) q/=k,j++;
g[i]=j;
}
//计算1到最大n 的每个数中有k2 有多少个
if(k2!=)
for(int i=;i<=maxn;i++)
{
int j=,q=i;
while(q%k2==) q/=k2,j++;
g2[i]=j;
}
memset(jy,0xfffffff,sizeof(jy));
//计算前缀 即 1到i 中有多少个k
for(int i=;i<=maxn;i++)
f[i]+=f[i-]+g[i];
//1到i 中有多少个k2
if(k2!=) for(int i=;i<=maxn;i++)
f2[i]+=f2[i-]+g2[i];
//计算z与u
for(int i=;i<=maxn;i++)
for(int j=;j<=i&&j<=maxm;j++)
z[i][j]=z[i][j-]+check(i,j),
u[i][j]=u[i-][min(i-,j)]+z[i][j]; for(int i=;i<=t;i++)
printf("%d\n",u[qu[i][]][qu[i][]]);
return ;
}
Day 2 T1的更多相关文章
- T1加权像(T1 weighted image,T1WI)
T1加权成像(T1-weighted imaging,T1WI)是指这种成像方法重点突出组织纵向弛豫差别,而尽量减少组织其他特性如横向弛豫等对图像的影响. 弛豫:物理用语,从某一个状态恢复到平衡态的过 ...
- 关于2016.12.12——T1的反思:凸包的意义与应用
2016.12.12 T1 给n个圆,保证圆圆相离,求将圆围起来的最小周长.n<=100 就像上图.考场上,我就想用切线的角度来做凸包.以圆心x,y排序,像点凸包一样,不过用两圆之间的下切线角度 ...
- T2 Func<in T1,out T2>(T1 arg)
委托调用方法的4种方式. using System; using System.Collections.Generic; namespace ConsoleApplication1 { delegat ...
- E1、T1链路
北美的24路脉码调制PCM简称T1 速率是1.544Mbit/s 北美使用的T1系统共有24个话路,每个话路采样脉冲用7bit编码,然后再加上1位信令码元,因此一个话路占用8bit. 帧同步码是在24 ...
- Action<T1, T2>委托
封装包含两个参数的方法委托,没有返回值. 语法 public delegate void Action<in T1, in T2>( T1 arg1, T2 arg2 ) 类型参数 in ...
- 有三个线程T1 T2 T3,如何保证他们按顺序执行-转载
T3先执行,在T3的run中,调用t2.join,让t2执行完成后再执行t3 在T2的run中,调用t1.join,让t1执行完成后再让T2执行 public class Test { // 1.现在 ...
- 现在有T1、T2、T3三个线程,怎样保证T2在T1执行完后执行,T3在T2执行完后执行?使用Join
public class TestJoin { public static void main(String[] args) { Thread t1 = new Thread(new T1(), &q ...
- 【测试】在hr用户下自行创建T1和T2表写一条SQL语句,(NL连接)
SQL> select t1.* from t1,t2 where t1.object_id=t2.object_id; rows selected. Execution Plan ------ ...
- MRI中T1和T2的含义与区分[转]
A. MRI名词解释 T1加权像.T2加权像为磁共振检查中报告中常提到的术语,很多非专业人士不明白是什么意思,要想认识何为T1加权像.T2加权像,请先了解几个基本概念: 1.磁共振(maget ...
- noip2015day1 T1 4510 神奇的幻方
4510 神奇的幻方 noip2015day1 T1 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Descripti ...
随机推荐
- jQuery学习过程问题笔记
1. jQuery中,$('selector').click(function(){})和用bind绑定:$('selector').bind('click',function(){})有什么区别? ...
- OpenCV笔记大集锦(转载)
整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的.如果有好的资源,也欢迎介绍和分享. 1:OpenCV学习笔记 作者:CSDN数量:55篇博文网址: ...
- Tsinsen A1486. 树(王康宁)
Description 一棵树,问至少有 \(k\) 个黑点的路径最大异或和. Sol 点分治. 用点分治找重心控制树高就不说了,主要是对答案的统计的地方. 将所有路径按点的个数排序. 可以发现当左端 ...
- 浅谈CPU和GPU的区别
导读: CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景.CPU需要很强的通用性来处理各种不同的数据类型,而GPU面对的则是类型高度统一的.相互无依赖的大规模数据 ...
- python中单引号, 双引号,三引号的差异
1. 单引号和双引号用法都是一样的,但是如果字符串里有相同的字符时要使用\进行转义 举例:1) print 'hello'2) print "hello"1和2,结果都是hello ...
- 【java回调】java两个类之间的回调函数传递
背景交代:熟悉用js开发的cordovaAPP:对java一窍不通的我,老师让做一个监测用户拍照事件的功能,无奈没有找到现成的库,无奈自己动手开发java插件~~0基础java GreenHand,祝 ...
- CSS标签
CSS类选择器被大量使用了 class = cssname
- sql server 2008 R2配置管理
安装vs2013后,sql server 2008R2配置管理提示“远程过程调用失败” 这是因为vs2013自带的Microsoft SQL Server 2012Local DB与之冲突. 通过升级 ...
- java dom4j封装和解析XML
package org.scbit.lsbi.scp.utils; import java.util.ArrayList; import java.util.List; import org.dom4 ...
- C#之反射
Assembly assembly = Assembly.Load("PeopleDal"); //获取程序集名称 Module[] modules = assembly.GetM ...