KMP算法(改进后的字符串匹配算法)
转载:http://blog.csdn.net/liu88010988/article/details/50789960
kmp算法完成的任务是:给定两个字符串O和f,长度分别为n和m,判断f是否在O中出现,如果出现则返回出现的位置。常规方法是遍历a的每一个位置,然后从该位置开始和b进行匹配,但是这种方法的复杂度是O(nm)。kmp算法通过一个O(m)的预处理,使匹配的复杂度降为O(n+m)。
这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。
1.
首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。
2.
因为B与A不匹配,搜索词再往后移。
3.
就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。
4.
接着比较字符串和搜索词的下一个字符,还是相同。
5.
直到字符串有一个字符,与搜索词对应的字符不相同为止。
6.
这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。
7.
一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。
8.
怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。
9.
已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
因为 6 - 2 等于4,所以将搜索词向后移动4位。
10.
因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。
11.
因为空格与A不匹配,继续后移一位。
12.
逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。
13.
逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。
14.
下面介绍《部分匹配表》是如何产生的。
首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。
15.
"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,
- "A"的前缀和后缀都为空集,共有元素的长度为0;
- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;
- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
16.
"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。
public class KMPTest {
public static void main(String[] args) {
String string = "abca";
String source = "abccabcababcad";
int[] ii1 = kmpNext(string);
for (int i = 0; i < ii1.length; i++) {
System.out.print(ii1[i] + " ");
}
System.out.println();
kmp(source, string, ii1);
}
//可找出多个符合要求的串
public static void kmp(String original, String find, int next[]) {
int j = 0;
for (int i = 0; i < original.length(); i++) {
while (j > 0 && original.charAt(i) != find.charAt(j)) {
j = next[j - 1];
}
if (original.charAt(i) == find.charAt(j))
j++;
if (j == find.length()) {
System.out.println("find at position " + (i - j));
System.out.println(original.subSequence(i - j + 1, i + 1));
j = next[j - 1];
// j = 0;
}
}
}
public static int[] kmpNext(String dest) { // aaccaba
int[] next = new int[dest.length()];
next[0] = 0;
for (int i = 1, j = 0; i < dest.length(); i++) {
while (j > 0 && dest.charAt(j) != dest.charAt(i)) {
j = next[j - 1];
}
if (dest.charAt(i) == dest.charAt(j)) {
j++;
}
next[i] = j;
}
return next;
}
}
KMP算法(改进后的字符串匹配算法)的更多相关文章
- KMP字符串匹配算法翔解❤
看了Angel_Kitty学姐的博客,我豁然开朗,写下此文: 那么首先我们知道,kmp算法是一种字符串匹配算法,那么我们来看一个例子. 比方说,现在我有两段像这样子的字符串: 分别是T和P,很明显,P ...
- 经典KMP算法C++与Java实现代码
前言: KMP算法是一种字符串匹配算法,由Knuth,Morris和Pratt同时发现(简称KMP算法).KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的.比 ...
- 学习笔记-KMP算法
按照学习计划和TimeMachine学长的推荐,学习了一下KMP算法. 昨晚晚自习下课前粗略的看了看,发现根本理解不了高端的next数组啊有木有,不过好在在今天系统的学习了之后感觉是有很大提升的了,起 ...
- KMP 算法总结
KMP算法是基本的字符串匹配算法,但是代码实现上有一些细节容易错.这篇随笔将认真总结一下. KMP算法的核心是: The KMP algorithm searches for occurrences ...
- Algorithm --> KMP算法
KMP算法 一.传统字符串匹配算法 /* * 从s中第sIndex位置开始匹配p * 若匹配成功,返回s中模式串p的起始index * 若匹配失败,返回-1 */ ) { ; || p.length( ...
- 来去学习之---KMP算法--next计算过程
一.概述 KMP算法是一种字符串匹配算法,比如现有字符串 T:ABCDABCDABCDCABCDABCDE, P:ABCDABCDE P字符串对应的next值:[0,0,0,0,1,2,3,4,0] ...
- 【文文殿下】浅谈KMP算法next数组与循环节的关系
KMP算法 KMP算法是一种字符串匹配算法,他可以在O(n+m)的时间内求出一个模式串在另一个模式串下出现的次数. KMP算法是利用next数组进行自匹配,然后来进行匹配的. Next数组 Next数 ...
- 【原创】通俗易懂的讲解KMP算法(字符串匹配算法)及代码实现
一.本文简介 本文的目的是简单明了的讲解KMP算法的思想及实现过程. 网上的文章的确有些杂乱,有的过浅,有的太深,希望本文对初学者是非常友好的. 其实KMP算法有一些改良版,这些是在理解KMP核心思想 ...
- Python 细聊从暴力(BF)字符串匹配算法到 KMP 算法之间的精妙变化
1. 字符串匹配算法 所谓字符串匹配算法,简单地说就是在一个目标字符串中查找是否存在另一个模式字符串.如在字符串 "ABCDEFG" 中查找是否存在 "EF" ...
随机推荐
- MyBatis For .NET学习-问题总结
1. MyBatis在进行sqlserver与c# 类型转换时需要注意,sqlserver中dbtype为float时,c#需要使用double与之对应,而不能使用float或decimal 2. M ...
- 腾讯 微信春招nlp实习生一面二面(猝)
一面: 1.算法题: 1 28数组中出现次数超过一半的数字 2 手写快排:八大排序算法总结(2) 2.项目介绍: 大多都是项目中涉及到的技术. TFIDF 的原理 word2vec的原理 3.算法原理 ...
- 学习Android开发看那些书好?
学习一样新事物或许有多种方式,报培训班,看视频,向高手请教等等,但一本好书往往可以让你少走很多弯路,事半功倍. 下面推荐几本个人觉得搞Android开发值得一读的书籍. Head First Java ...
- leveldb0
leveldb的源代码进行学习,则纯粹是出于一个码农对美好世界进行探究的好奇.接下来将尽可能从源代码上给出leveldb代码的详尽注释,这里先列出自己在阅读前后的主要参考. 0 官方文档http:// ...
- Extjs 正则表达式 常用的
extjs正则表达式验证 2011年10月10日 10:36:05 阅读数:7305 在EXT中使用正则表达式验证的方法:fieldLabel : '员工号',name : 'employee.e ...
- python之yield
#!/usr/bin/env python# -*- coding:utf-8 -*-# Author:wadeson '''def foo(): print("-------------- ...
- php下获取http状态的实现代码
在项目开发中,有时我们需要知道远程的URL地址是否能访问正常,判断其正常与否后进行下一步的操作,那么在PHP中如何获取远程HTTP的状态呢? 文件preg.php header("HTTP/ ...
- poj 2187:Beauty Contest(旋转卡壳)
Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 32708 Accepted: 10156 Description Bes ...
- Scrapyd 项目爬虫部署
scrapyd是一个用于部署和运行scrapy爬虫的程序,它允许你通过JSON API来部署爬虫项目和控制爬虫运行 scrapyd是一个守护进程,监听爬虫的运行和请求,然后启动进程来执行它们 安装扩展 ...
- javaWeb中JNDI的使用,为什么要加java:comp/env前缀
转载自(http://blog.csdn.net/guodongsoft/article/details/52399527) 我们在使用JNDI调用某个对象时,会有下述两种方式 context.loo ...