来源:https://www.cnblogs.com/arachis/p/spark_parameters.html

摘要

  1.num-executors

  2.executor-memory

  3.executor-cores

  4.driver-memory

  5.spark.default.parallelism

  6.spark.storage.memoryFraction

  7.spark.shuffle.memoryFraction

  8.total-executor-cores

  9.资源参数参考示例

内容

1.num-executors

  • 参数说明:该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的Spark作业的运行速度是非常慢的。
  • 参数调优建议:每个Spark作业的运行一般设置50~100个左右的Executor进程比较合适,设置太少或太多的Executor进程都不好。设置的太少,无法充分利用集群资源;设置的太多的话,大部分队列可能无法给予充分的资源。

2.executor-memory

  • 参数说明:该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。
  • 参数调优建议:每个Executor进程的内存设置4G~8G较为合适。但是这只是一个参考值,具体的设置还是得根据不同部门的资源队列来定。可以看看自己团队的资源队列的最大内存限制是多少,num-executors乘以executor-memory,是不能超过队列的最大内存量的。此外,如果你是跟团队里其他人共享这个资源队列,那么申请的内存量最好不要超过资源队列最大总内存的1/3~1/2,避免你自己的Spark作业占用了队列所有的资源,导致别的同学的作业无法运行。

3.executor-cores

  • 参数说明:该参数用于设置每个Executor进程的CPU core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU core同一时间只能执行一个task线程,因此每个Executor进程的CPU core数量越多,越能够快速地执行完分配给自己的所有task线程。
  • 参数调优建议:Executor的CPU core数量设置为2~4个较为合适。同样得根据不同部门的资源队列来定,可以看看自己的资源队列的最大CPU core限制是多少,再依据设置的Executor数量,来决定每个Executor进程可以分配到几个CPU core。同样建议,如果是跟他人共享这个队列,那么num-executors * executor-cores不要超过队列总CPU core的1/3~1/2左右比较合适,也是避免影响其他同学的作业运行。

4.driver-memory

  • 参数说明:该参数用于设置Driver进程的内存。
  • 参数调优建议:Driver的内存通常来说不设置,或者设置1G左右应该就够了。唯一需要注意的一点是,如果需要使用collect算子将RDD的数据全部拉取到Driver上进行处理,那么必须确保Driver的内存足够大,否则会出现OOM内存溢出的问题。

5.spark.default.parallelism

  • 参数说明:该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。
  • 参数调优建议:Spark作业的默认task数量为500~1000个较为合适。很多同学常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS block对应一个task。通常来说,Spark默认设置的数量是偏少的(比如就几十个task),如果task数量偏少的话,就会导致你前面设置好的Executor的参数都前功尽弃。试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,那么90%的Executor进程可能根本就没有task执行,也就是白白浪费了资源!因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍较为合适,比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。

6.spark.storage.memoryFraction

  • 参数说明:该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor 60%的内存,可以用来保存持久化的RDD数据。根据你选择的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘。
  • 参数调优建议:如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中。避免内存不够缓存所有的数据,导致数据只能写入磁盘中,降低了性能。但是如果Spark作业中的shuffle类操作比较多,而持久化操作比较少,那么这个参数的值适当降低一些比较合适。此外,如果发现作业由于频繁的gc导致运行缓慢(通过spark web ui可以观察到作业的gc耗时),意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。

7.spark.shuffle.memoryFraction

  • 参数说明:该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。
  • 参数调优建议:如果Spark作业中的RDD持久化操作较少,shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多时内存不够用,必须溢写到磁盘上,降低了性能。此外,如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。

8.total-executor-cores

  • 参数说明:Total cores for all executors.

9.资源参数参考示例

以下是一份spark-submit命令的示例:

./bin/spark-submit \
--master spark://192.168.1.1:7077 \
--num-executors 100 \
--executor-memory 6G \
--executor-cores 4 \
 --total-executor-cores 400 \ ##standalone default all cores
--driver-memory 1G \
--conf spark.default.parallelism=1000 \
--conf spark.storage.memoryFraction=0.5 \
--conf spark.shuffle.memoryFraction=0.3 \

spark作业提交参数设置(转)的更多相关文章

  1. Spark学习(四) -- Spark作业提交

    标签(空格分隔): Spark 作业提交 先回顾一下WordCount的过程: sc.textFile("README.rd").flatMap(line => line.s ...

  2. Spark作业提交至Yarn上执行的 一个异常

    (1)控制台Yarn(Cluster模式)打印的异常日志: client token: N/A         diagnostics: Application application_1584359 ...

  3. spark-submit提交参数设置

    /apps/app/spark-1.6.1-bin-hadoop2.6/bin/spark-submit --class com.zdhy.zoc2.sparksql.core.JavaSparkSq ...

  4. spark 作业提交

    kafka-topics.sh --describe --zookeeper xxxxx:2181 --topic testkafka-run-class.sh kafka.tools.GetOffs ...

  5. Spark on Yarn:任务提交参数配置

    当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 以下参数配置为例子: spark-submit -- ...

  6. Spark性能调优篇一之任务提交参数调整

    问题一:有哪些资源可以分配给spark作业使用? 答案:executor个数,cpu per exector(每个executor可使用的CPU个数),memory per exector(每个exe ...

  7. 黎活明8天快速掌握android视频教程--27_网络通信之通过GET和POST方式提交参数给web应用

    1该项目主要实现Android客户端以get的方式或者post的方式向java web服务器提交参数 Android客户端通过get方式或者post方式将参数提交给后台服务器,后台服务器对收到的参数进 ...

  8. Spark学习之路(五)—— Spark运行模式与作业提交

    一.作业提交 1.1 spark-submit Spark所有模式均使用spark-submit命令提交作业,其格式如下: ./bin/spark-submit \ --class <main- ...

  9. Spark 系列(五)—— Spark 运行模式与作业提交

    一.作业提交 1.1 spark-submit Spark 所有模式均使用 spark-submit 命令提交作业,其格式如下: ./bin/spark-submit \ --class <ma ...

随机推荐

  1. phaser2 微信小游戏入手

    phaser2小游戏基本没什么什么问题,可以下常开发游戏.如果遇到什么问题, 可以提出来共同讨论. 下面来个例子 import './lib/weapp-adapter'; import Phaser ...

  2. Java Map 在put值时value值不被覆盖

    一.问题描述 最近在代码开发中遇到一个问题,在往Map中put文件路径值然后把Map放到List中去时,遇到问题是Map的后一个值总是把前一个值覆盖,导致最后Map中只有一个值. 二.解决办法(有如下 ...

  3. 【UNIX环境编程、操作系统】孤儿进程和僵尸进程

    基本概念: 在类UNIX系统中,僵尸进程是指完成执行(通过exit系统调用,或运行时发生致命错误或收到终止信号所致)但在操作系统的进程表中仍然有一个进程表表项(进程控制块PCB),处于"终止 ...

  4. p12转pem公钥私钥

    cer格式证书生成p12文件,前面写了有一篇了. 这里是从p12文件导出公钥和私钥 //1.生成1.key文件 openssl pkcs12 -in apple_payment.p12 -nocert ...

  5. [您有新的未分配科技点]数位dp:从懵X到板子(例题:HDU2089 不要62)

    数位dp主要用来处理一系列需要数数的问题,一般套路为“求[l,r]区间内满足要求的数/数位的个数” 要求五花八门……比如“不出现某个数字序列”,“某种数的出现次数”等等…… 面对这种数数题,暴力的想法 ...

  6. 洛谷P2125图书馆书架上的书 题解报告

    题目描述 图书馆有n个书架,第1个书架后面是第2个书架,第2个书架后面是第3个书架……第n-1个书架后面是第n个书架,第n个书架后面是第1个书架,第i个书架上有b[i]本书.现在,为了让图书馆更美观, ...

  7. (转)Xsl 的Webshell(aspx)版本

    关于使用xsl的webshell以前已经有人发过了,比如aspx的一个webshell如下: <%@ Page Language="C#" Debug="true& ...

  8. hadoop(三)HDFS基础使用

    一.HDFS前言 1. 设计思想          分而治之:将大文件,大批量文件,分布式的存放于大量服务器上.以便于采取分而治之的方式对海量数据进行运算分析     2. 在大数据系统架构中的应用  ...

  9. 如何在 ASP.NET 应用程序中实现模拟用户身份(在ASP.NET中以管理员身份运行网站)

    前言 在实际的项目开发中,我们可能会需要调用一些非托管程序,而有些非托管程序需要有更高的身份权限才能正确执行.本文介绍了如何让IIS承载的ASP.NET网站以特定的账户执行,比如Administrat ...

  10. Update submitted Perforce changelist description by P4.net api

    Firstly download the p4.net sdk from Perforce official site's download page. It's a .zip file, extra ...