spark作业提交参数设置(转)
来源:https://www.cnblogs.com/arachis/p/spark_parameters.html
摘要
1.num-executors
2.executor-memory
3.executor-cores
4.driver-memory
5.spark.default.parallelism
6.spark.storage.memoryFraction
7.spark.shuffle.memoryFraction
8.total-executor-cores
9.资源参数参考示例
内容
1.num-executors
- 参数说明:该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的Spark作业的运行速度是非常慢的。
- 参数调优建议:每个Spark作业的运行一般设置50~100个左右的Executor进程比较合适,设置太少或太多的Executor进程都不好。设置的太少,无法充分利用集群资源;设置的太多的话,大部分队列可能无法给予充分的资源。
2.executor-memory
- 参数说明:该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常,也有直接的关联。
- 参数调优建议:每个Executor进程的内存设置4G~8G较为合适。但是这只是一个参考值,具体的设置还是得根据不同部门的资源队列来定。可以看看自己团队的资源队列的最大内存限制是多少,num-executors乘以executor-memory,是不能超过队列的最大内存量的。此外,如果你是跟团队里其他人共享这个资源队列,那么申请的内存量最好不要超过资源队列最大总内存的1/3~1/2,避免你自己的Spark作业占用了队列所有的资源,导致别的同学的作业无法运行。
3.executor-cores
- 参数说明:该参数用于设置每个Executor进程的CPU core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU core同一时间只能执行一个task线程,因此每个Executor进程的CPU core数量越多,越能够快速地执行完分配给自己的所有task线程。
- 参数调优建议:Executor的CPU core数量设置为2~4个较为合适。同样得根据不同部门的资源队列来定,可以看看自己的资源队列的最大CPU core限制是多少,再依据设置的Executor数量,来决定每个Executor进程可以分配到几个CPU core。同样建议,如果是跟他人共享这个队列,那么num-executors * executor-cores不要超过队列总CPU core的1/3~1/2左右比较合适,也是避免影响其他同学的作业运行。
4.driver-memory
- 参数说明:该参数用于设置Driver进程的内存。
- 参数调优建议:Driver的内存通常来说不设置,或者设置1G左右应该就够了。唯一需要注意的一点是,如果需要使用collect算子将RDD的数据全部拉取到Driver上进行处理,那么必须确保Driver的内存足够大,否则会出现OOM内存溢出的问题。
5.spark.default.parallelism
- 参数说明:该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。
- 参数调优建议:Spark作业的默认task数量为500~1000个较为合适。很多同学常犯的一个错误就是不去设置这个参数,那么此时就会导致Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS block对应一个task。通常来说,Spark默认设置的数量是偏少的(比如就几十个task),如果task数量偏少的话,就会导致你前面设置好的Executor的参数都前功尽弃。试想一下,无论你的Executor进程有多少个,内存和CPU有多大,但是task只有1个或者10个,那么90%的Executor进程可能根本就没有task执行,也就是白白浪费了资源!因此Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍较为合适,比如Executor的总CPU core数量为300个,那么设置1000个task是可以的,此时可以充分地利用Spark集群的资源。
6.spark.storage.memoryFraction
- 参数说明:该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor 60%的内存,可以用来保存持久化的RDD数据。根据你选择的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘。
- 参数调优建议:如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中。避免内存不够缓存所有的数据,导致数据只能写入磁盘中,降低了性能。但是如果Spark作业中的shuffle类操作比较多,而持久化操作比较少,那么这个参数的值适当降低一些比较合适。此外,如果发现作业由于频繁的gc导致运行缓慢(通过spark web ui可以观察到作业的gc耗时),意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。
7.spark.shuffle.memoryFraction
- 参数说明:该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。
- 参数调优建议:如果Spark作业中的RDD持久化操作较少,shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多时内存不够用,必须溢写到磁盘上,降低了性能。此外,如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。
8.total-executor-cores
- 参数说明:Total cores for all executors.
9.资源参数参考示例
以下是一份spark-submit命令的示例:
./bin/spark-submit \
--master spark://192.168.1.1:7077 \
--num-executors 100 \
--executor-memory 6G \
--executor-cores 4 \
--total-executor-cores 400 \ ##standalone default all cores
--driver-memory 1G \
--conf spark.default.parallelism=1000 \
--conf spark.storage.memoryFraction=0.5 \
--conf spark.shuffle.memoryFraction=0.3 \
spark作业提交参数设置(转)的更多相关文章
- Spark学习(四) -- Spark作业提交
标签(空格分隔): Spark 作业提交 先回顾一下WordCount的过程: sc.textFile("README.rd").flatMap(line => line.s ...
- Spark作业提交至Yarn上执行的 一个异常
(1)控制台Yarn(Cluster模式)打印的异常日志: client token: N/A diagnostics: Application application_1584359 ...
- spark-submit提交参数设置
/apps/app/spark-1.6.1-bin-hadoop2.6/bin/spark-submit --class com.zdhy.zoc2.sparksql.core.JavaSparkSq ...
- spark 作业提交
kafka-topics.sh --describe --zookeeper xxxxx:2181 --topic testkafka-run-class.sh kafka.tools.GetOffs ...
- Spark on Yarn:任务提交参数配置
当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 以下参数配置为例子: spark-submit -- ...
- Spark性能调优篇一之任务提交参数调整
问题一:有哪些资源可以分配给spark作业使用? 答案:executor个数,cpu per exector(每个executor可使用的CPU个数),memory per exector(每个exe ...
- 黎活明8天快速掌握android视频教程--27_网络通信之通过GET和POST方式提交参数给web应用
1该项目主要实现Android客户端以get的方式或者post的方式向java web服务器提交参数 Android客户端通过get方式或者post方式将参数提交给后台服务器,后台服务器对收到的参数进 ...
- Spark学习之路(五)—— Spark运行模式与作业提交
一.作业提交 1.1 spark-submit Spark所有模式均使用spark-submit命令提交作业,其格式如下: ./bin/spark-submit \ --class <main- ...
- Spark 系列(五)—— Spark 运行模式与作业提交
一.作业提交 1.1 spark-submit Spark 所有模式均使用 spark-submit 命令提交作业,其格式如下: ./bin/spark-submit \ --class <ma ...
随机推荐
- lock 默认公平锁还是非公平锁?公平锁是如何定义?如何实现
ReentrantLock的实现是基于其内部类FairSync(公平锁)和NonFairSync(非公平锁)实现的. 其可重入性是基于Thread.currentThread()实现的: 如果当前线程 ...
- 阿里巴巴分布式数据库服务DRDS研发历程
淘宝TDDL研发历史和背景 分布式关系型数据库服务(Distribute Relational Database Service,简称DRDS)是一种水平拆分.可平滑扩缩容.读写分离的在线分布式数据库 ...
- 包装类 integer 当做 list的参数时候 会出现无法删除成功的现象
- bzoj5127[Lydsy12月赛]数据校验
多少年不写题解了 题目描述: 著名出题人小 Q 出了一道题,这个题给定一个正整数序列 a1, a2, ..., an,并保证输入数据中,对于 a 的任意一个非空连续子区间 [l, r],该区间内出现过 ...
- 【刷题】LOJ 6041 「雅礼集训 2017 Day7」事情的相似度
题目描述 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的有相同的事情发 ...
- BZOJ3724 [HNOI2012]集合选数 【状压dp】
题目链接 BZOJ3724 题解 构造矩阵的思路真的没想到 选\(x\)就不能选\(2x\)和\(3x\),会发现实际可以转化为矩阵相邻两项 \[\begin{matrix}1 & 3 &am ...
- 安装lighttpd
依赖包: zlib,pcre,cronolog,bzip2, 1: 将lighttpd的原码包.以土豆现用lighttpd配置文件为基础的lighttpd.conf文件.日志轮循工具cronolog ...
- Hadoop1.2.1异常No route to host
Hadoop1.2.1异常Bad connect ack with firstBadLink (No route to host ) 0.说明 Hadoop集群之前运行正常,增加了新节点之后,需要执行 ...
- ER-18
ER #18简要题解 就是推出循环矩阵乘积 然后一次操作后得到的c矩阵第一行第i列就是i的情况(b矩阵下标是a矩阵下标的转置) 两个循环矩阵乘积还是循环矩阵 以此推式子,发现c矩阵的第一行可以用a,b ...
- jsp 的 4 种基本语法
1.JSP 注释 2.JSP 声明 3.JSP 表达式 4.JSP 脚本 JSP 注释: 注释格式: <%-- 注释内容 --%> 需要注意的是,JSP 的注释不会输出到 HTML 中. ...