超大图像的二值化方法

1.可以采用分块方法,

2.先缩放处理就行二值化,然后还原大小

一:分块处理超大图像的二值化问题

def big_image_binary(image):
print(image.shape) #(, , )  #超大图像,屏幕无法显示完整
cw,ch = ,
h,w = image.shape[:]
gray = cv.cvtColor(image,cv.COLOR_RGB2GRAY) #要二值化图像,要先进行灰度化处理
for row in range(,h,ch):
for col in range(,w,cw):
roi = gray[row:row+ch,col:col+cw] #获取分块
# ret,binary = cv.threshold(roi,,,cv.THRESH_BINARY|cv.THRESH_OTSU)  #全局阈值
binary = cv.adaptiveThreshold(roi,,cv.ADAPTIVE_THRESH_GAUSSIAN_C,cv.THRESH_BINARY,,)  #局部阈值
gray[row:row + ch, col:col + cw] = binary  #分块覆盖
print(np.std(binary),np.mean(binary)) cv.imwrite("binary2.jpg",gray)

(一)全局阈值处理

ret,binary = cv.threshold(roi,,,cv.THRESH_BINARY|cv.THRESH_OTSU)  #全局阈值

(二)局部阈值(更好)

binary = cv.adaptiveThreshold(roi,,cv.ADAPTIVE_THRESH_GAUSSIAN_C,cv.THRESH_BINARY,,)  #局部阈值

二:空白区域过滤

def big_image_binary(image):
print(image.shape) #(, , )
cw,ch = ,
h,w = image.shape[:]
gray = cv.cvtColor(image,cv.COLOR_RGB2GRAY) #要二值化图像,要先进行灰度化处理
for row in range(,h,ch):
for col in range(,w,cw):
roi = gray[row:row+ch,col:col+cw] #获取分块
dev = np.std(roi)
avg = np.mean(roi)
if dev < and avg > :  #满足条件,接近空白区域,让他变黑
gray[row:row + ch, col:col + cw] = #全部都赋值为0
else:
ret,binary = cv.threshold(roi,,,cv.THRESH_BINARY|cv.THRESH_OTSU)
gray[row:row + ch, col:col + cw] = binary
print(np.std(binary), np.mean(binary)) cv.imwrite("binary.jpg",gray)

相关知识补充

(一)numpy中相关方法介绍

numpy.std() 计算矩阵标准差

numpy mean()用法返回数组元素的平均值

(二)空白图像的过滤(当我们确认该区域为空白图像,可以不作处理,不进行二分处理)

print(np.std(binary),np.mean(binary))
通过上面获取图像的标准差和平均值,当标准差为0,平均值为255时,代表该区域为空白区域
我们可以将该空白区域(或者满足一定条件的区域),直接设置为0或者255或者其他想要获取的图像,不需要进行多余的阈值二分

OpenCV---超大图像二值化和空白区域过滤的更多相关文章

  1. opencv python 图像二值化/简单阈值化/大津阈值法

    pip install matplotlib 1简单的阈值化 cv2.threshold第一个参数是源图像,它应该是灰度图像. 第二个参数是用于对像素值进行分类的阈值, 第三个参数是maxVal,它表 ...

  2. 10、OpenCV Python 图像二值化

    __author__ = "WSX" import cv2 as cv import numpy as np #-----------二值化(黑0和白 255)---------- ...

  3. [python-opencv]超大图像二值化方法

    *分块 *全局阈值 VS 局部阈值 import cv2 as cv import numpy as np def big_image_binary(image): print(image.shape ...

  4. [python-opencv]图像二值化【图像阈值】

    图像二值化[图像阈值]简介: 如果灰度图像的像素值大于阈值,则为其分配一个值(可以是白色255),否则为其分配另一个值(可以是黑色0) 图像二值化就是将灰度图像上的像素值设置为0或255,也就是将整个 ...

  5. Python+OpenCV图像处理(十)—— 图像二值化

    简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 一.普通图像二值化 代码如下: import cv2 as cv import numpy ...

  6. OpenCV_基于局部自适应阈值的图像二值化

    在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...

  7. 致敬学长!J20航模遥控器开源项目计划【开局篇】 | 先做一个开机界面 | MATLAB图像二值化 | Img2Lcd图片取模 | OLED显示图片

    我们的开源宗旨:自由 协调 开放 合作 共享 拥抱开源,丰富国内开源生态,开展多人运动,欢迎加入我们哈~ 和一群志同道合的人,做自己所热爱的事! 项目开源地址:https://github.com/C ...

  8. C# 指针操作图像 二值化处理

    /// <summary> /// 二值化图像 /// </summary> /// <param name="bmp"></param& ...

  9. openCV_java 图像二值化

    较为常用的图像二值化方法有:1)全局固定阈值:2)局部自适应阈值:3)OTSU等. 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化 ...

随机推荐

  1. [数位DP]把枚举变成递推(未完)

    动态规划(DP)是个很玄学的东西 数位DP实际上 就是把数字上的枚举变成按位的递推 有伪代码 for i =这一位起始值 i<=这一位终止值 dp[这一位][i]+=dp[这一位-1][i]+- ...

  2. 软工实践-Alpha 冲刺 (7/10)

    队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 已经解决登录注册等基本功能的界面. 完成非功能的主界面制作 ...

  3. Windows上安装、配置MySQL的常见问题

    一,MySQL的下载安装 MySQL的安装过程就不说了,基本上和一般软件的安装过程没什么两样,就是一路点next,设置的root用户的密码要牢记.具体教程可以参考:http://jingyan.bai ...

  4. DB2定位锁等待

    在应用中,我们经常会碰到sql执行很慢,但是数据库cpu和内存使用率又不高的情况,类似的问题基本上由于锁,排序等原因造成,本文主要描述如何去定位锁等待问题,谁在锁等待?等待谁持有的锁?锁在那个表? 一 ...

  5. WebService(二)

    使用eclipse开发webservice的服务器端以及客户端的简单实例 1.服务端 在eclipse中像建立一个web项目一样,new->Dynamic Web Project A.建一个需要 ...

  6. Web-JSP表单字符验证

    代码后续补上

  7. vue知识拓展

    组件 *组件里面如果要放数据:        data必须是函数的形式,函数必须返回一个对象(json),有的时候我们自己创建的组件需要使用到自己的数据,此外组建中也可以放入自己的其他的比如事件之类的 ...

  8. IDEA换行CRLF, LF, CR的解释和默认设置

    在window下开发有一个大坑,就是换行默认是CRLF,也就是回车换行,但是Linux下只有换行LF,这样代码提交后,会出现编译问题,所以最好的办法是在IDEA下设置默认为LF. 首先我们先介绍CRL ...

  9. Linux下编译程序时,经常会遇到“undefined reference to XXX” 报错,

    Linux下编译程序时,经常会遇到“undefined reference to XXX” 报错, 这里总结一些可能的原因和解决方案,给需要的朋友: 说道undefined reference err ...

  10. VBA-从周课表统计节次

    Sub datainsert() Dim r1 As Integer, r2 As Integer, i As Integer, j As Integer, findrow As Integer, f ...