OpenCV---人脸检测
一:相关依赖文件下载
https://github.com/opencv/opencv
二:实现步骤(图片检测)
(一)读取图片
image= cv.imread("./d.png") #读取图片
(二)灰度转换
gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) #在灰度图像基础上实现的
(三)获取人脸识别训练数据
face_detector = cv.CascadeClassifier("./haarcascade_frontalface_alt_tree.xml") #级联检测器获取文件
这个xml文件,就是opencv在GitHub上共享出来的具有普适的训练好的数据。我们可以直接的拿来使用
(四)探测人脸,获取相关数据
faces = face_detector.detectMultiScale(gray,1.1,)
#第一个参数是灰度图像
#第二个参数是尺度变换,就是向上或者向下每次是原来的多少倍,这里是1.02倍
#第三个参数是人脸检测次数,设置越高,误检率越低,但是对于迷糊图片,我们设置越高,越不易检测出来,要适当降低
(五)根据相关数据在原图像上画出人脸位置
for x,y,w,h in faces:
cv.rectangle(image,(x,y),(x+w,y+h),(,,),)
cv.imshow("face_detection",image)
(六)全部代码
import cv2 as cv
import numpy as np def face_detect_demo(image):
gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) #在灰度图像基础上实现的
face_detector = cv.CascadeClassifier("./haarcascade_frontalface_alt_tree.xml") #级联检测器获取文件
faces = face_detector.detectMultiScale(gray,1.1,) #在多个尺度空间上进行人脸检测
#第一个参数是灰度图像
#第二个参数是尺度变换,就是向上或者向下每次是原来的多少倍,这里是1.02倍
#第三个参数是人脸检测次数,设置越高,误检率越低,但是对于迷糊图片,我们设置越高,越不易检测出来,要试单降低
for x,y,w,h in faces:
cv.rectangle(image,(x,y),(x+w,y+h),(,,),)
cv.imshow("face_detection",image) src = cv.imread("./d.png") #读取图片
cv.namedWindow("input image",cv.WINDOW_AUTOSIZE) #创建GUI窗口,形式为自适应
cv.imshow("input image",src) #通过名字将图像和窗口联系 face_detect_demo(src) cv.waitKey() #等待用户操作,里面等待参数是毫秒,我们填写0,代表是永远,等待用户操作
cv.destroyAllWindows() #销毁所有窗口
三:实现视频检测人脸
步骤相同,我们只需要将视频中每一帧图像进行处理,调用上面的图像人脸检测即可
import cv2 as cv
import numpy as np def face_detect_demo(image):
gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) #在灰度图像基础上实现的
face_detector = cv.CascadeClassifier("./haarcascade_frontalface_default.xml") #级联检测器获取文件
faces = face_detector.detectMultiScale(gray,1.1,) #在多个尺度空间上进行人脸检测
#第一个参数是灰度图像
#第二个参数是尺度变换,就是向上或者向下每次是原来的多少倍,这里是1.02倍
#第三个参数是人脸检测次数,设置越高,误检率越低,但是对于迷糊图片,我们设置越高,越不易检测出来,要试单降低
for x,y,w,h in faces:
cv.rectangle(image,(x,y),(x+w,y+h),(,,),)
cv.imshow("face_detection",image) def video_face_detect():
capture = cv.VideoCapture()
while True:
ret,frame = capture.read() #frame是每一帧图像,ret是返回值,为0是表示图像读取完毕
frame = cv.flip(frame,)
if ret == False:
break
face_detect_demo(frame)
c = cv.waitKey()
if c == :
break video_face_detect() cv.waitKey() #等待用户操作,里面等待参数是毫秒,我们填写0,代表是永远,等待用户操作
cv.destroyAllWindows() #销毁所有窗口
相关知识补充:
(一)CascadeClassifier级联分类器
是Opencv中做人脸检测的时候的一个级联分类器
有两种选择:一是使用老版本的CvHaarClassifierCascade函数,一是使用新版本的CascadeClassifier类。
老版本的分类器只支持类Haar特征,而新版本的分类器既可以使用Haar,也可以使用LBP特征。
基本原理
xml中存放的是训练后的特征池,特征size大小根据训练时的参数而定,检测的时候可以简单理解为就是将每个固定size特征(检测窗口)与输入图像的同样大小区域比较,如果匹配那么就记录这个矩形区域的位置,然后滑动窗口,检测图像的另一个区域,重复操作。
由于输入的图像中特征大小不定,比如在输入图像中眼睛是50x50的区域,而训练时的是25x25,那么只有当输入图像缩小到一半的时候,才能匹配上,所以这里还有一个逐步缩小图像,也就是制作图像金字塔的流程。
cascPath = "./haarcascade_frontalface_default.xml"
cv2.CascadeClassifier(cascPath) #构造方法加载入xml特征文件
detectMultiScale方法
faces = faceCascade.detectMultiScale(gray,1.1,,)
def detectMultiScale(self, image, scaleFactor=None, minNeighbors=None, flags=None, minSize=None, maxSize=None): # real signature unknown; restored from __doc__
#第一个参数image:是灰度图像
#第二个参数scaleFactor:是尺度变换,就是向上或者向下每次是原来的多少倍,这里是1.02倍
#第三个参数minNeighbors:是人脸检测次数,设置越高,误检率越低,但是对于迷糊图片,我们设置越高,越不易检测出来,要适当降低
#第四个参数flags:
CASCADE_DO_CANNY_PRUNING=1, 利用canny边缘检测来排除一些边缘很少或者很多的图像区域
CASCADE_SCALE_IMAGE=2, 正常比例检测 CASCADE_FIND_BIGGEST_OBJECT=4, 只检测最大的物体
CASCADE_DO_ROUGH_SEARCH=8 初略的检测
#最后两个参数用来限制得到的目标区域的范围
注意:
flags对于新的分类器没有用
设置minNeighbors:是在人脸附近进行指定次数的检测,获取最准确的范围,设置越高,误检率越低,但是对于迷糊图片,我们设置越高,越不易检测出来,要适当降低
OpenCV---人脸检测的更多相关文章
- keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)
引自:http://blog.csdn.net/sinat_26917383/article/details/72885715 人脸识别热门,表情识别更加.但是表情识别很难,因为人脸的微表情很多,本节 ...
- opencv人脸检测分类器训练小结
这两天在初学目标检测的算法及步骤,其中人脸检测作为最经典的算法,于是进行了重点研究.该算法最重要的是建立人脸检测分类器,因此我用了一天的时间来学习分类器的训练.这方面的资料很多,但是能按照一个资料运行 ...
- Android+openCV人脸检测2(静态图片)
前几篇文章中有提到对openCV环境配置,这里再重新梳理导入和使用openCV进行简单的人脸检测(包括使用级联分类器) 一 首先导入openCVLibrary320 二 设置gradle的sdk版本号 ...
- opencv人脸检测,旋转处理
年会签到,拍自己的大头照,有的人可能会拍成横向的,需要旋转,用人脸检测并修正它(图片). 1. 无脑检测步骤为: 1. opencv 读取图片,灰度转换 2. 使用CascadeClassifier( ...
- OpenCV人脸检测并把图片写成avi视频
读出某一个文件夹下“jpg”后缀的全部图片后,用的OpenCV自带的人脸检测检测图片中的人脸,调整图片的大小写成一个avi视频. 主要是要记录一下CvVideoWriter的用法和如何从文件夹中读取某 ...
- 人脸检测学习笔记(数据集-DLIB人脸检测原理-DLIB&OpenCV人脸检测方法及对比)
1.Easily Create High Quality Object Detectors with Deep Learning 2016/10/11 http://blog.dlib.net/201 ...
- OpenCV——人脸检测
OpenCV支持的目标检测的方法: 利用样本的Haar特征进行的分类器训练,得到的级联boosted分类器(Cascade Classification) 1.加载级联分类器 CascadeClass ...
- OpenCV: OpenCV人脸检测框可信度排序
参考文章:http://blog.csdn.net/hua_007/article/details/45368607 使用OpenCV进行人脸识别时,使用 casecade.detectMultiSc ...
- OpenCV人脸检测demo--facedetect
&1 问题来源 在运行官网的facedetect这个demo的时候,总是不会出来result的图形,电脑右下角提示的错误是“显示器驱动程序已停止响应,而且已恢复 windows 8(R)”. ...
- android opencv 人脸检测
转载自http://blog.csdn.net/jesse__zhong/article/details/24889709 .......省略包 public class Staticdetectio ...
随机推荐
- [redis] linux下安装篇(1)
一.redis是什么redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合)和zset(有 ...
- 几个好用的php函数
几个好用的php函数 1.PHP加密解密 PHP加密和解密函数可以用来加密一些有用的字符串存放在数据库里,并且通过可逆解密字符串,该函数使用了base64和MD5加密和解密. function enc ...
- 【Alpha】阶段第一次Scrum Meeting
[Alpha]阶段第一次Scrum Meeting 工作情况 团队成员 今日已完成任务 明日待完成任务 刘峻辰 后端接口开发 测试接口,修正bug 赵智源 撰写测试方案书 部署实际任务和编写测试样例 ...
- Fiveplus--王者光耀1
**光耀101** 汇总博客: 关文涛: 博客地址:随笔1 随笔2 杨蓝婷: 博客地址:随笔1 随笔2 蔡雅菁: 博客地址:随笔1 随笔2 黄森敏: 博客地址:随笔1 随笔2 林兴源: 博客地址:随笔 ...
- 软工实践-Alpha 冲刺 (8/10)
队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 已经解决登录注册等基本功能的界面. 完成非功能的主界面制作 ...
- hdu1010--Tempter of the Bone(迷宫)
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1010 Tempter of the Bone Time Limit: 2000/1000 MS (Jav ...
- UVA 11270 轮廓线
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=33787 题意: 用1*2或2*1的长条把n*m方格铺满的方案数. ...
- HDU 5646 DZY Loves Partition
题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5646 bc:http://bestcoder.hdu.edu.cn/contests/con ...
- iOS- Swift:如何使用iOS8中的UIAlertController
1.前言 在前段时间手机QQ:升级iOS8.3后,发图就崩的情况, 就是因为iOS8更新UIAlertController后,仍然使用UIAlertview导致的 具体原因分析 这个可以看腾讯团队发出 ...
- MySQL 事务 转自菜鸟教程 讲的清晰
MySQL 事务 MySQL 事务主要用于处理操作量大,复杂度高的数据.比如说,在人员管理系统中,你删除一个人员,你即需要删除人员的基本资料,也要删除和该人员相关的信息,如信箱,文章等等,这样,这些数 ...