一 、Spark概述

官网:http://spark.apache.org

1.        什么是spark

Spark是一种快速、通用、可扩展的大数据分析引擎,2009年诞生于加州大学伯克利分校AMPLab,2010年开源,2013年6月成为Apache孵化项目,2014年2月成为Apache顶级项目。项目是用Scala进行编写。

目前,Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含SparkSQL、Spark Streaming、GraphX、MLib、SparkR等子项目,Spark是基于内存计算的大数据并行计算框架。除了扩展了广泛使用的 MapReduce 计算模型,而且高效地支持更多计算模式,包括交互式查询和流处理。Spark 适用于各种各样原先需要多种不同的分布式平台的场景,包括批处理、迭代算法、交互式查询、流处理。通过在一个统一的框架下支持这些不同的计算,Spark 使我们可以简单而低耗地把各种处理流程整合在一起。而这样的组合,在实际的数据分析 过程中是很有意义的。不仅如此,Spark 的这种特性还大大减轻了原先需要对各种平台分 别管理的负担。

大一统的软件栈,各个组件关系密切并且可以相互调用,这种设计有几个好处:1、软件栈中所有的程序库和高级组件 都可以从下层的改进中获益。2、运行整个软件栈的代价变小了。不需要运 行 5 到 10 套独立的软件系统了,一个机构只需要运行一套软件系统即可。系统的部署、维护、测试、支持等大大缩减。3、能够构建出无缝整合不同处理模型的应用。

Spark的内置项目如下:

Spark Core实现了 Spark 的基本功能,包含任务调度、内存管理、错误恢复、与存储系统 交互等模块。Spark Core 中还包含了对弹性分布式数据集(resilient distributed dataset,简称RDD)的 API 定义。

Spark SQL是 Spark 用来操作结构化数据的程序包。通过 Spark SQL,我们可以使用 SQL 或者 Apache Hive 版本的 SQL 方言(HQL)来查询数据。Spark SQL 支持多种数据源,比 如 Hive 表、Parquet 以及 JSON 等。

Spark Streaming是 Spark 提供的对实时数据进行流式计算的组件。提供了用来操作数据流的 API,并且与 Spark Core 中的 RDD API 高度对应。

Spark MLlib提供常见的机器学习(ML)功能的程序库。包括分类、回归、聚类、协同过滤等,还提供了模型评估、数据 导入等额外的支持功能。

集群管理器:Spark 设计为可以高效地在一个计算节点到数千个计算节点之间伸缩计 算。为了实现这样的要求,同时获得最大灵活性,Spark 支持在各种集群管理器(cluster manager)上运行,包括 Hadoop YARN、Apache Mesos,以及 Spark 自带的一个简易调度 器,叫作独立调度器。

Spark得到了众多大数据公司的支持,这些公司包括Hortonworks、IBM、Intel、Cloudera、MapR、Pivotal、百度、阿里、腾讯、京东、携程、优酷土豆。当前百度的Spark已应用于凤巢、大搜索、直达号、百度大数据等业务;阿里利用GraphX构建了大规模的图计算和图挖掘系统,实现了很多生产系统的推荐算法;腾讯Spark集群达到8000台的规模,是当前已知的世界上最大的Spark集群。

2.      Spark特点

快:

与Hadoop的MapReduce相比,Spark基于内存的运算要快100倍以上,基于硬盘的运算也要快10倍以上。Spark实现了高效的DAG执行引擎,可以通过基于内存来高效处理数据流。计算的中间结果是存在于内存中的。

易用:

Spark支持Java、Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用。而且Spark支持交互式的Python和Scala的shell,可以非常方便地在这些shell中使用Spark集群来验证解决问题的方法。

通用:

Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝使用。Spark统一的解决方案非常具有吸引力,毕竟任何公司都想用统一的平台去处理遇到的问题,减少开发和维护的人力成本和部署平台的物力成本。

兼容性:

Spark可以非常方便地与其他的开源产品进行融合。比如,Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,器,并且可以处理所有Hadoop支持的数据,包括HDFS、HBase和Cassandra等。这对于已经部署Hadoop集群的用户特别重要,因为不需要做任何数据迁移就可以使用Spark的强大处理能力。Spark也可以不依赖于第三方的资源管理和调度器,它实现了Standalone作为其内置的资源管理和调度框架,这样进一步降低了Spark的使用门槛,使得所有人都可以非常容易地部署和使用Spark。此外,Spark还提供了在EC2上部署Standalone的Spark集群的工具。

1.3  Spark的用户和用途

我们大致把Spark的用例分为两类:数据科学应用和数据处理应用。也就对应的有两种人群:数据科学家和工程师。

数据科学任务:

主要是数据分析领域,数据科学家要负责分析数据并建模,具备 SQL、统计、预测建模(机器学习)等方面的经验,以及一定的使用 Python、 Matlab 或 R 语言进行编程的能力。

数据处理应用:

工程师定义为使用 Spark 开发 生产环境中的数据处理应用的软件开发者,通过对接Spark的API实现对处理的处理和转换等任务。

二、Spark部署

两种部署方式:

第一种:Standalone

1.解压

$ tar -zxf ~/softwares/installtions/spark-2.1.1-bin-hadoop2.7.tgz -C ~/modules/

  

2.修改配置文件,将所有以template结尾的文件拓展名去掉

cd /home/admin/modules/spark-2.1.1-bin-hadoop2.7/conf

  

vim salves

linux01
linux02
linux03

  

vim spark-defaults.conf   配置历史服务

spark.eventLog.enabled           true
spark.eventLog.dir hdfs://linux01:8020/directory
spark.eventLog.compress true

  

vim spark-env.sh

SPARK_MASTER_HOST=linux01
SPARK_MASTER_PORT=7077 export SPARK_HISTORY_OPTS="-Dspark.history.ui.port=4000
-Dspark.history.retainedApplications=3
-Dspark.history.fs.logDirectory=hdfs://linux01:8020/directory"

  

3.到hdfs中创建directory目录

$ cd ~/modules/hadoop-2.7.2/

$ bin/hdfs dfs -mkdir /directory

  

4.分发配置完成的Spark

$ scp -r ~/modules/spark-2.1.1-bin-hadoop2.7/ linux02:/home/admin/modules/
$ scp -r ~/modules/spark-2.1.1-bin-hadoop2.7/ linux03:/home/admin/modules/

  

第二种:YARN

1.修改配置

$ vim /home/admin/modules/hadoop-2.7.2/etc/hadoop/yarn-site.xml

添加下面配置
<!--是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<!--是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true -->
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>

  

2.分发配置

$ scp -r /home/admin/modules/hadoop-2.7.2/etc linux02:/home/admin/modules/hadoop-2.7.2/
$ scp -r /home/admin/modules/hadoop-2.7.2/etc linux03:/home/admin/modules/hadoop-2.7.2/

  

3.重启整个集群

$ sh /home/admin/tools/stop-cluster.sh
$ sh /home/admin/tools/start-cluster.sh

  

4.修改spark-evn.sh

vim /home/admin/modules/spark-2.1.1-bin-hadoop2.7/conf/spark-env.sh 

HADOOP_CONF_DIR=/home/admin/modules/hadoop-2.7.2/etc/hadoop
YARN_CONF_DIR=/home/admin/modules/hadoop-2.7.2/etc/hadoop

  

5.分发spark-evn.sh

$ scp -r ~/modules/spark-2.1.1-bin-hadoop2.7/ linux02:/home/admin/modules/
$ scp -r ~/modules/spark-2.1.1-bin-hadoop2.7/ linux03:/home/admin/modules/

  

6.重启spark

 $ sbin/stop-all.sh
$ sbin/start-all.sh

  

7.启动Spark历史日志服务

$ sbin/start-history-server.sh

  

8.全部完成后确认,访问浏览器http://linux01:8080/

三、Spark简单使用

1.Spark-shell

$ bin/spark-shell \
--master spark://linux01:7077 \
--executor-memory 2g \
--total-executor-cores 2

  

2.Standalone提交jar包(任务:是一个使用蒙特卡洛算法,求圆周率)

$ /home/admin/modules/spark-2.1.1-bin-hadoop2.7/bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://linux01:7077 \
--executor-memory 1G \
--total-executor-cores 2 \
/home/admin/modules/spark-2.1.1-bin-hadoop2.7/examples/jars/spark-examples_2.11-2.1.1.jar \
100

  

3.Local模式运行

$ /home/admin/modules/spark-2.1.1-bin-hadoop2.7/bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master local[*] \
--executor-memory 1G \
--total-executor-cores 2 \
/home/admin/modules/spark-2.1.1-bin-hadoop2.7/examples/jars/spark-examples_2.11-2.1.1.jar \
100

  

4.YARN模式运行

$ /home/admin/modules/spark-2.1.1-bin-hadoop2.7/bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
/home/admin/modules/spark-2.1.1-bin-hadoop2.7/examples/jars/spark-examples_2.11-2.1.1.jar \
100

  

大数据(13) - Spark的安装部署与简单使用的更多相关文章

  1. 【大数据之数据仓库】安装部署GreenPlum集群

    本篇将向大家介绍如何快捷的安装部署GreenPlum测试集群,大家可以跟着我一块儿实践一把^_^ 1.主机资源 申请2台网易云主机,操作系统必须是RedHat或者CentOS,配置尽量高一点.如果是s ...

  2. 【互动问答分享】第13期决胜云计算大数据时代Spark亚太研究院公益大讲堂

    “决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第13期互动问答分享] Q1:tachyon+spark框架现在有很多大公司在使用吧? Yahoo!已经在长期大规模使用: 国内也有 ...

  3. 【互动问答分享】第6期决胜云计算大数据时代Spark亚太研究院公益大讲堂

    “决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第6期互动问答分享] Q1:spark streaming 可以不同数据流 join吗? Spark Streaming不同的数据流 ...

  4. 2020/4/26 大数据的zookeeper分布式安装

    大数据的zookeeper分布式安装 **** 前面的文章已经提到Hadoop的伪分布式安装.现在就在原有的基础上安装zookeeper. 首先启动Hadoop平台 [root@master ~]# ...

  5. 【互动问答分享】第10期决胜云计算大数据时代Spark亚太研究院公益大讲堂

    “决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第10期互动问答分享] Q1:Spark on Yarn的运行方式是什么? Spark on Yarn的运行方式有两种:Client ...

  6. 【互动问答分享】第8期决胜云计算大数据时代Spark亚太研究院公益大讲堂

    “决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第8期互动问答分享] Q1:spark线上用什么版本好? 建议从最低使用的Spark 1.0.0版本,Spark在1.0.0开始核心 ...

  7. 【互动问答分享】第7期决胜云计算大数据时代Spark亚太研究院公益大讲堂

    “决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第7期互动问答分享] Q1:Spark中的RDD到底是什么? RDD是Spark的核心抽象,可以把RDD看做“分布式函数编程语言”. ...

  8. CDH构建大数据平台-Kerberos高可用部署【完结篇】

    CDH构建大数据平台-Kerberos高可用部署[完结篇] 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.  一.安装Kerberos相关的软件包并同步配置文件 1>.实验环境 ...

  9. 【互动问答分享】第15期决胜云计算大数据时代Spark亚太研究院公益大讲堂

    "决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第15期互动问答分享] Q1:AppClient和worker.master之间的关系是什么? AppClien ...

随机推荐

  1. win10 当前操作环境不支持支付宝控件 完美解决办法

    第一步,修改系统配置 在运行中输入“gpedit.msc”打开本地组策略编辑器: 打运行窗口的方法是:按win键+R (按下win键再按R键之后 同时松开)  win键 即windows 的微标键 如 ...

  2. SQL语言 之 事务控制

    一.概述 事务是一些数据库操作的集合,这些操作由一组相关的SQL语句组成(只能是 DML 语句),它们是一个有机的整体,要么全部成功执行,要么全部不执行.事务时数据库并发控制和恢复技术的基本单位. 事 ...

  3. Unity for Windows: III–Publishing your unity game to Windows Phone Store

    原地址:http://digitalerr0r.wordpress.com/2013/08/27/unity-for-windows-iiipublishing-to-windows-phone-st ...

  4. 清除tomcat的缓存

    删除tomcat目录下的work目录中的Catalina目录就好了!

  5. TP框架中关于if、else 分支结构逻辑错误

    TP框架中关于if.else 分支结构逻辑错误 代码中没有任何错误 将注释往下一行就可以解决 造成问题的原因: TP框架中 想分配变量可以使用assign方法 在[模块]中: $this->as ...

  6. 31、Arrays数组排序(续)——自定义排序

    自定义的类要按照一定的方式进行排序,比如一个Person类要按照年龄进行从小到大排序,比如一个Student类要按照成绩进行由高到低排序. 这里我们采用两种方式,一种是使用Comparable接口:让 ...

  7. jquery 获取html <img /> 位置时出错问题

    如图所示,这样端口小图片都是通过jquery html()方法设置的(参数html就是画整个图片的html字符串),如图: 但是出现图片没有完全渲染完的问题,如图: 从图中可以看出在代码运行到断点的时 ...

  8. 关闭mysql慢查询日志

    开启mysql慢日志 MySQL的慢查询日志是MySQL提供的一种日志记录,它用来记录在MySQL中响应时间超过阀值的语句,具体指运行时间超过long_query_time值的SQL,则会被记录到慢查 ...

  9. js判断浏览器是否关闭

    http://www.blogjava.net/wyz191/archive/2008/12/08/245089.html JS   window.onunload=function(){      ...

  10. ORC 资料Mark

    1 OCR开源代码网址汇总  1.1 OCRE(OCR Easy), http://lem.eui.upm.es/ocre.html 1.2 Clara OCR,http://directory.fs ...