题目链接

题意:

  n个物品全部乱序排列(都不在原来的位置)的方案数。

思路:

  dp[i]表示i个物品都乱序排序的方案数,所以状态转移方程。考虑i-1个物品乱序,放入第i个物品一定要和i-1个的其中一个交换位置,即;考虑i-2个物品乱序,第i-1个和第i个首先在原来的位置,两种方法使得乱序,一种和第i个交换(不能和前i-2个交换,那样成dp[i-1]),还有一种是第i个先和第i-1个交换,再和前i-2个其中一个交换,即,仔细想想,这个和dp[i-1]是不同的交换方法。

另外:

  还有二维的dp写法,虽然高精度开不了,但是还是有启发意义。设dp[i][j]表示i个物品j个乱序的方案数,状态转移方程,最后一项的(i-j+1)的意思是从前i-1个中选择在原来位置的物品进行交换,即

#include <bits/stdc++.h>

const int MAXN = 2000 + 5;
struct bign {
int len, num[MAXN]; bign () {
len = 0;
memset(num, 0, sizeof(num));
}
bign (int number) {*this = number;}
bign (const char* number) {*this = number;} void DelZero ();
void Put (); void operator = (int number);
void operator = (char* number); bool operator < (const bign& b) const;
bool operator > (const bign& b) const { return b < *this; }
bool operator <= (const bign& b) const { return !(b < *this); }
bool operator >= (const bign& b) const { return !(*this < b); }
bool operator != (const bign& b) const { return b < *this || *this < b;}
bool operator == (const bign& b) const { return !(b != *this); } void operator ++ ();
void operator -- ();
bign operator + (const int& b);
bign operator + (const bign& b);
bign operator - (const int& b);
bign operator - (const bign& b);
bign operator * (const int& b);
bign operator * (const bign& b);
bign operator / (const int& b);
//bign operator / (const bign& b);
int operator % (const int& b);
}; bign dp[805]; int main() {
dp[0] = 0; dp[1] = 0; dp[2] = 1;
for (int i=3; i<=800; ++i) {
dp[i] = (dp[i-1] + dp[i-2]) * (i - 1);
}
int n;
while (scanf ("%d", &n) == 1 && n != -1) {
dp[n].Put ();
puts ("");
}
return 0;
} void bign::DelZero () {
while (len && num[len-1] == 0)
len--; if (len == 0) {
num[len++] = 0;
}
} void bign::Put () {
for (int i = len-1; i >= 0; i--)
printf("%d", num[i]);
} void bign::operator = (char* number) {
len = strlen (number);
for (int i = 0; i < len; i++)
num[i] = number[len-i-1] - '0'; DelZero ();
} void bign::operator = (int number) { len = 0;
while (number) {
num[len++] = number%10;
number /= 10;
} DelZero ();
} bool bign::operator < (const bign& b) const {
if (len != b.len)
return len < b.len;
for (int i = len-1; i >= 0; i--)
if (num[i] != b.num[i])
return num[i] < b.num[i];
return false;
} void bign::operator ++ () {
int s = 1; for (int i = 0; i < len; i++) {
s = s + num[i];
num[i] = s % 10;
s /= 10;
if (!s) break;
} while (s) {
num[len++] = s%10;
s /= 10;
}
} void bign::operator -- () {
if (num[0] == 0 && len == 1) return; int s = -1;
for (int i = 0; i < len; i++) {
s = s + num[i];
num[i] = (s + 10) % 10;
if (s >= 0) break;
}
DelZero ();
} bign bign::operator + (const int& b) {
bign a = b;
return *this + a;
} bign bign::operator + (const bign& b) {
int bignSum = 0;
bign ans; for (int i = 0; i < len || i < b.len; i++) {
if (i < len) bignSum += num[i];
if (i < b.len) bignSum += b.num[i]; ans.num[ans.len++] = bignSum % 10;
bignSum /= 10;
} while (bignSum) {
ans.num[ans.len++] = bignSum % 10;
bignSum /= 10;
} return ans;
} bign bign::operator - (const int& b) {
bign a = b;
return *this - a;
} bign bign::operator - (const bign& b) {
int bignSub = 0;
bign ans;
for (int i = 0; i < len || i < b.len; i++) {
bignSub += num[i];
bignSub -= b.num[i];
ans.num[ans.len++] = (bignSub + 10) % 10;
if (bignSub < 0) bignSub = -1;
}
ans.DelZero ();
return ans;
} bign bign::operator * (const int& b) {
int bignSum = 0;
bign ans; ans.len = len;
for (int i = 0; i < len; i++) {
bignSum += num[i] * b;
ans.num[i] = bignSum % 10;
bignSum /= 10;
} while (bignSum) {
ans.num[ans.len++] = bignSum % 10;
bignSum /= 10;
} return ans;
} bign bign::operator * (const bign& b) {
bign ans;
ans.len = 0; for (int i = 0; i < len; i++){
int bignSum = 0; for (int j = 0; j < b.len; j++){
bignSum += num[i] * b.num[j] + ans.num[i+j];
ans.num[i+j] = bignSum % 10;
bignSum /= 10;
}
ans.len = i + b.len; while (bignSum){
ans.num[ans.len++] = bignSum % 10;
bignSum /= 10;
}
}
return ans;
} bign bign::operator / (const int& b) { bign ans; int s = 0;
for (int i = len-1; i >= 0; i--) {
s = s * 10 + num[i];
ans.num[i] = s/b;
s %= b;
} ans.len = len;
ans.DelZero ();
return ans;
} int bign::operator % (const int& b) { bign ans; int s = 0;
for (int i = len-1; i >= 0; i--) {
s = s * 10 + num[i];
ans.num[i] = s/b;
s %= b;
} return s;
}

  

递推+高精度 UVA 10497 Sweet Child Makes Trouble(可爱的孩子惹麻烦)的更多相关文章

  1. UVA 10497 - Sweet Child Makes Trouble 高精度DP

    Children are always sweet but they can sometimes make you feel bitter. In this problem, you will see ...

  2. 递推+高精度+找规律 UVA 10254 The Priest Mathematician

    题目传送门 /* 题意:汉诺塔问题变形,多了第四个盘子可以放前k个塔,然后n-k个是经典的汉诺塔问题,问最少操作次数 递推+高精度+找规律:f[k]表示前k放在第四个盘子,g[n-k]表示经典三个盘子 ...

  3. PKU 2506 Tiling(递推+高精度||string应用)

    题目大意:原题链接有2×1和2×2两种规格的地板,现要拼2×n的形状,共有多少种情况,首先要做这道题目要先对递推有一定的了解.解题思路:1.假设我们已经铺好了2×(n-1)的情形,则要铺到2×n则只能 ...

  4. [luogu]P1066 2^k进制数[数学][递推][高精度]

    [luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...

  5. [BZOJ1089][SCOI2003]严格n元树(递推+高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...

  6. 【BZOJ】1002: [FJOI2007]轮状病毒 递推+高精度

    1002: [FJOI2007]轮状病毒 Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同 ...

  7. BZOJ 1002 FJOI2007 轮状病毒 递推+高精度

    题目大意:轮状病毒基定义如图.求有多少n轮状病毒 这个递推实在是不会--所以我选择了打表找规律 首先执行下面程序 #include<cstdio> #include<cstring& ...

  8. 递推DP UVA 1366 Martian Mining

    题目传送门 /* 题意:抽象一点就是给两个矩阵,重叠的(就是两者选择其一),两种铺路:从右到左和从下到上,中途不能转弯, 到达边界后把沿途路上的权值相加求和使最大 DP:这是道递推题,首先我题目看了老 ...

  9. 递推 + 高精度 --- Tiling

    Tiling Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7264   Accepted: 3528 Descriptio ...

随机推荐

  1. IIS7.0发布Web服务-0001

    配置错误 不能在此路径中使用此配置节.如果在父级别上锁定了该节,便会出现这种情况.锁定是默认设置的 (overrideModeDefault="Deny"),或者是通过包含 ove ...

  2. Vim 资料总结

    vi/vim基本使用方法:http://www.cnblogs.com/itech/archive/2009/04/17/1438439.html Vim命令合集: http://www.cnblog ...

  3. qt添加cef库嵌入web [转]

    qt cef嵌入web 原文http://blog.sina.com.cn/s/blog_9e59cf590102vnfc.html 最近项目需要,研究了下libcef库. Cef(Chromium ...

  4. django(3) 一对多跨表查询、ajax、多对多

    1.一对多跨表查询获取数据的三种形式:对象.字典.元组 例:有host与business两张表,host与business的id字段关联,business在host表中的对象名是b,  通过查询hos ...

  5. Selenium Xpath Tutorials - Identifying xpath for element with examples to use in selenium

    Xpath in selenium is close to must required. XPath is element locator and you need to provide xpath ...

  6. MyBatis Like查询处理%_符号

    如果我们数据库中存的字段包含有"%_"这两个like查询的通配符,那么在查询的时候把"%_"当作关键字是查询不出来的,因为mybatis会把这两个字符当作通配符 ...

  7. GridBagConstraints 参数解释

    GridBagConstraints 的具体参考为: http://download.oracle.com/technetwork/java/javase/6/docs/zh/api/java/awt ...

  8. 【Python】if __name__ == "__main__"做了什么?

    在Python的很多源文件中,会有这样的语句: if __name__ == '__main__': # script code here 比如有两个源文件A.py和B.py,都有上面的代码:在B.p ...

  9. javaSE基础06

    javaSE基础06 一.匿名对象 没有名字的对象,叫做匿名对象. 1.2匿名对象的使用注意点: 1.我们一般不会用匿名对象给属性赋值的,无法获取属性值(现阶段只能设置和拿到一个属性值.只能调用一次方 ...

  10. 创建cocos项目并打包