递推+高精度 UVA 10497 Sweet Child Makes Trouble(可爱的孩子惹麻烦)
题意:
n个物品全部乱序排列(都不在原来的位置)的方案数。
思路:
dp[i]表示i个物品都乱序排序的方案数,所以状态转移方程。考虑i-1个物品乱序,放入第i个物品一定要和i-1个的其中一个交换位置,即
;考虑i-2个物品乱序,第i-1个和第i个首先在原来的位置,两种方法使得乱序,一种和第i个交换(不能和前i-2个交换,那样成dp[i-1]),还有一种是第i个先和第i-1个交换,再和前i-2个其中一个交换,即
,仔细想想,这个和dp[i-1]是不同的交换方法。
另外:
还有二维的dp写法,虽然高精度开不了,但是还是有启发意义。设dp[i][j]表示i个物品j个乱序的方案数,状态转移方程,最后一项的(i-j+1)的意思是从前i-1个中选择在原来位置的物品进行交换,即
。
#include <bits/stdc++.h> const int MAXN = 2000 + 5;
struct bign {
int len, num[MAXN]; bign () {
len = 0;
memset(num, 0, sizeof(num));
}
bign (int number) {*this = number;}
bign (const char* number) {*this = number;} void DelZero ();
void Put (); void operator = (int number);
void operator = (char* number); bool operator < (const bign& b) const;
bool operator > (const bign& b) const { return b < *this; }
bool operator <= (const bign& b) const { return !(b < *this); }
bool operator >= (const bign& b) const { return !(*this < b); }
bool operator != (const bign& b) const { return b < *this || *this < b;}
bool operator == (const bign& b) const { return !(b != *this); } void operator ++ ();
void operator -- ();
bign operator + (const int& b);
bign operator + (const bign& b);
bign operator - (const int& b);
bign operator - (const bign& b);
bign operator * (const int& b);
bign operator * (const bign& b);
bign operator / (const int& b);
//bign operator / (const bign& b);
int operator % (const int& b);
}; bign dp[805]; int main() {
dp[0] = 0; dp[1] = 0; dp[2] = 1;
for (int i=3; i<=800; ++i) {
dp[i] = (dp[i-1] + dp[i-2]) * (i - 1);
}
int n;
while (scanf ("%d", &n) == 1 && n != -1) {
dp[n].Put ();
puts ("");
}
return 0;
} void bign::DelZero () {
while (len && num[len-1] == 0)
len--; if (len == 0) {
num[len++] = 0;
}
} void bign::Put () {
for (int i = len-1; i >= 0; i--)
printf("%d", num[i]);
} void bign::operator = (char* number) {
len = strlen (number);
for (int i = 0; i < len; i++)
num[i] = number[len-i-1] - '0'; DelZero ();
} void bign::operator = (int number) { len = 0;
while (number) {
num[len++] = number%10;
number /= 10;
} DelZero ();
} bool bign::operator < (const bign& b) const {
if (len != b.len)
return len < b.len;
for (int i = len-1; i >= 0; i--)
if (num[i] != b.num[i])
return num[i] < b.num[i];
return false;
} void bign::operator ++ () {
int s = 1; for (int i = 0; i < len; i++) {
s = s + num[i];
num[i] = s % 10;
s /= 10;
if (!s) break;
} while (s) {
num[len++] = s%10;
s /= 10;
}
} void bign::operator -- () {
if (num[0] == 0 && len == 1) return; int s = -1;
for (int i = 0; i < len; i++) {
s = s + num[i];
num[i] = (s + 10) % 10;
if (s >= 0) break;
}
DelZero ();
} bign bign::operator + (const int& b) {
bign a = b;
return *this + a;
} bign bign::operator + (const bign& b) {
int bignSum = 0;
bign ans; for (int i = 0; i < len || i < b.len; i++) {
if (i < len) bignSum += num[i];
if (i < b.len) bignSum += b.num[i]; ans.num[ans.len++] = bignSum % 10;
bignSum /= 10;
} while (bignSum) {
ans.num[ans.len++] = bignSum % 10;
bignSum /= 10;
} return ans;
} bign bign::operator - (const int& b) {
bign a = b;
return *this - a;
} bign bign::operator - (const bign& b) {
int bignSub = 0;
bign ans;
for (int i = 0; i < len || i < b.len; i++) {
bignSub += num[i];
bignSub -= b.num[i];
ans.num[ans.len++] = (bignSub + 10) % 10;
if (bignSub < 0) bignSub = -1;
}
ans.DelZero ();
return ans;
} bign bign::operator * (const int& b) {
int bignSum = 0;
bign ans; ans.len = len;
for (int i = 0; i < len; i++) {
bignSum += num[i] * b;
ans.num[i] = bignSum % 10;
bignSum /= 10;
} while (bignSum) {
ans.num[ans.len++] = bignSum % 10;
bignSum /= 10;
} return ans;
} bign bign::operator * (const bign& b) {
bign ans;
ans.len = 0; for (int i = 0; i < len; i++){
int bignSum = 0; for (int j = 0; j < b.len; j++){
bignSum += num[i] * b.num[j] + ans.num[i+j];
ans.num[i+j] = bignSum % 10;
bignSum /= 10;
}
ans.len = i + b.len; while (bignSum){
ans.num[ans.len++] = bignSum % 10;
bignSum /= 10;
}
}
return ans;
} bign bign::operator / (const int& b) { bign ans; int s = 0;
for (int i = len-1; i >= 0; i--) {
s = s * 10 + num[i];
ans.num[i] = s/b;
s %= b;
} ans.len = len;
ans.DelZero ();
return ans;
} int bign::operator % (const int& b) { bign ans; int s = 0;
for (int i = len-1; i >= 0; i--) {
s = s * 10 + num[i];
ans.num[i] = s/b;
s %= b;
} return s;
}
递推+高精度 UVA 10497 Sweet Child Makes Trouble(可爱的孩子惹麻烦)的更多相关文章
- UVA 10497 - Sweet Child Makes Trouble 高精度DP
Children are always sweet but they can sometimes make you feel bitter. In this problem, you will see ...
- 递推+高精度+找规律 UVA 10254 The Priest Mathematician
题目传送门 /* 题意:汉诺塔问题变形,多了第四个盘子可以放前k个塔,然后n-k个是经典的汉诺塔问题,问最少操作次数 递推+高精度+找规律:f[k]表示前k放在第四个盘子,g[n-k]表示经典三个盘子 ...
- PKU 2506 Tiling(递推+高精度||string应用)
题目大意:原题链接有2×1和2×2两种规格的地板,现要拼2×n的形状,共有多少种情况,首先要做这道题目要先对递推有一定的了解.解题思路:1.假设我们已经铺好了2×(n-1)的情形,则要铺到2×n则只能 ...
- [luogu]P1066 2^k进制数[数学][递推][高精度]
[luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...
- [BZOJ1089][SCOI2003]严格n元树(递推+高精度)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...
- 【BZOJ】1002: [FJOI2007]轮状病毒 递推+高精度
1002: [FJOI2007]轮状病毒 Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同 ...
- BZOJ 1002 FJOI2007 轮状病毒 递推+高精度
题目大意:轮状病毒基定义如图.求有多少n轮状病毒 这个递推实在是不会--所以我选择了打表找规律 首先执行下面程序 #include<cstdio> #include<cstring& ...
- 递推DP UVA 1366 Martian Mining
题目传送门 /* 题意:抽象一点就是给两个矩阵,重叠的(就是两者选择其一),两种铺路:从右到左和从下到上,中途不能转弯, 到达边界后把沿途路上的权值相加求和使最大 DP:这是道递推题,首先我题目看了老 ...
- 递推 + 高精度 --- Tiling
Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7264 Accepted: 3528 Descriptio ...
随机推荐
- 关于es5的一些新方法
1.数组方法(1)isArray在之前我们判断数组类型的数据都是用instanceof来判断的,es5新增了对数组的判断,即Array.isArray()(2)every和some这两个方法一般用于对 ...
- C和指针 第十八章 性能评测工具gprof
linux平台下的gprof评测工具可以对程序进行分析,需要在编译时加上-pg选项,如上一章的二叉树代码: gcc -pg main.c ArrayBinaryTree.h ArrayBinaryTr ...
- 高程(4):执行环境、作用域、上下文执行过程、垃圾收集、try...catch...
高程三 4.2.4.3 一.执行环境 1.全局执行环境是最外层的执行环境. 2.每个函数都有自己的执行环境,执行函数时,函数环境就会被推入一个当前环境栈中,执行完毕,栈将其环境弹出,把控制器返回给之前 ...
- HTML5 图片本地压缩上传插件「localResizeIMG」
移动应用中用户往往需要上传照片,但是用户上传的照片尺寸通常很大,而手机的流量却很有限,所以在上传前对图像进行压缩是很有必要的. 原生应用可以直接对文件进行处理,网页应用就没有这个优势了.不过 canv ...
- 《PHP字符串函数》笔记
① str_repeat() 重复一个字符串; ② str_shuffle() 随机打乱一个字符串; ③ strftime() 根据区域设置格式化本地时间/日期; ④ strip_tags() 从字符 ...
- git服务器搭建总结
1.软件选择 服务端软件:由于我对linux还不熟悉,而且公司用的都是windows,于是找到了bonobo,这是一个基于.net framework 4.5和.net mvc4的开源软件,iis7. ...
- MQTT(三)-----连接与心跳
MQTT协议笔记之连接和心跳 - 推酷 http://www.tuicool.com/articles/AFvmee 互联网推送服务原理:长连接+心跳机制(MQTT协议) - clh604的专栏 - ...
- android下giflib
源码路径: android/external/giflib 用到的该lib的APP: ./external/chromium_org/android_webview/build/aosp_manife ...
- CentOS7中安装MySQL(简便)及 网站的搭建
一.首先,我们需要配置CentOS7中网络环境的搭建,物理机IP为192.168.100.39,虚拟机IP为192.168.100.139,网络模式设置为桥接模式 ,再进入系统挂载光盘.输入命令 ...
- 自动加载dll,加载dll中程序集的信息。
自动加载程序集,解析程序集中的方法. private static object Invoke(string lpFileName, string Namespace, string ClassNam ...