Problem 2020 组合

Accept: 714    Submit: 1724
Time Limit: 1000 mSec    Memory Limit : 32768 KB

 Problem Description

给出组合数C(n,m), 表示从n个元素中选出m个元素的方案数。例如C(5,2) = 10, C(4,2) = 6.可是当n,m比较大的时候,C(n,m)很大!于是xiaobo希望你输出 C(n,m) mod p的值!

 Input

输入数据第一行是一个正整数T,表示数据组数 (T <= 100) 接下来是T组数据,每组数据有3个正整数 n, m, p (1 <= m <= n <= 10^9, m <= 10^4, m < p < 10^9, p是素数)

 Output

对于每组数据,输出一个正整数,表示C(n,m) mod p的结果。

 Sample Input

2
5 2 3
5 2 61

 Sample Output

1
10

 Source

FOJ有奖月赛-2011年04月(校赛热身赛)

    ,并且是素数

这个问题有个叫做Lucas的定理,定理描述是,如果

那么得到

即C(n,m)模p等于p进制数上各位的C(ni,mi)模p的乘积。利用该定理,可以将计算较大的C(n,m)转化成计算各个较小的C(ni,mi)。
该方案能支持整型范围内所有数的组合数计算,甚至支持64位整数,注意中途溢出处理。该算法的时间复杂度跟n几乎不相关了,可以认为算法复杂度在常数和对数之间。

【卢卡斯(Lucas)定理】

Lucas定理用来求C(a,b)mod p的值,其中p为素数。

数学表达式为:

Lucas(a,b,q)=C(a%q,b%q)*Lucas(a/p,b/p,p);

Lucas(a,0,q)=0;

通过这个定理就可以很方便的把大数的组合转化成小数。但其中还是要求C(a%q,b%q)%p,所以这里引入逆元来求。

【定义】若整数a,b,p, 满足a·b≡1(mod p).则称a 为b 模p 的乘法逆元, 即a=b- 1mod p.其中, p 是模数。

应用到组合数中来就是:

a!/[b!*(a-b)!] % p == a! * [b!*(a-b)!]-1 %p

【逆元求法】:

对于正整数,如果有,那么把这个同余方程中的最小正整数解叫做的逆元。

逆元一般用扩展欧几里得算法来求得,如果为素数,那么还可以根据费马小定理得到逆元为

应用费马小定理,ap-1=1 mod p ,即  a*ap-2=1 mod p

也就是说  ap-2就是a的逆元。

当然这里求出来的逆元是在取模p的逆元,对我们最终目标没有影响。这也是比较方便而且比较好的方法。

#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define repd(i, a, b) for(int i = b; i >= a; i--)
#define sfi(n) scanf("%d", &n)
#define sfl(n) scanf("%I64d", &n)
#define pfi(n) printf("%d\n", n)
#define pfl(n) printf("%I64d\n", n)
#define MAXN 1000005 ll quickpow(ll m, ll n , ll k){
ll ans = ;
while(n){
if(n & )//如果n是奇数
ans = (ans * m) % k;
n = n >> ;//位运算“右移1类似除2”
m = (m * m) % k;
}
return ans;
} //ll quickpow(ll a, ll b, ll p)
//{
// ll ans = 1;
// a %= p;
// while(b)
// {
// if(b & 1)
// {
// ans = ans * a % p;
// b--;
// }
// b >>= 1;
// a = a * a % p;
// }
// return ans;
//} ll C(ll n, ll m, ll p)
{
if(m > n) return ;
ll ans = ;
for(int i = ; i <= m; i++)
{
ll a = (n - m + i) % p;
ll b = i % p;
ans = ans * (a * quickpow(b, p - , p) % p) % p;
}
return ans;
} ll Lucas(ll n, ll m, ll p)
{
if(m == ) return ;
else
return (C(n % p, m % p, p) * Lucas(n / p, m / p, p)) % p;
}
int main()
{
int T;
sfi(T);
while(T--)
{
ll n, m, p;
sfl(n), sfl(m), sfl(p);
pfl(Lucas(n, m, p));
}
return ;
}

Problem 2020 组合(FOJ)的更多相关文章

  1. lucas定理 FOJ 2020 组合

     Problem 2020 组合 Accept: 886    Submit: 2084Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem ...

  2. FZU 2020 :组合 【lucas】

    Problem Description 给出组合数C(n,m), 表示从n个元素中选出m个元素的方案数.例如C(5,2) = 10, C(4,2) = 6.可是当n,m比较大的时候,C(n,m)很大! ...

  3. poj2282The Counting Problem(组合)

    链接 计算0-9每一个数字出现的次数 逐位进行处理 对于每一位取几时依次算下组合的情况 注意0的情况需要特殊处理一下 因为0000 00 这样都是等于0的 前面的几位是多余的 #include < ...

  4. FZU 2020 组合 (Lucas定理)

    题意:中文题. 析:直接运用Lucas定理即可.但是FZU好奇怪啊,我开个常数都CE,弄的工CE了十几次,在vj上还不显示. 代码如下: #pragma comment(linker, "/ ...

  5. FZU 2020 组合

    组合数求模要用逆元,用到了扩展的欧几里得算法. #include<cstdio> int mod; typedef long long LL; void gcd(LL a,LL b,LL ...

  6. 分配问题与Hungarian算法

    分配问题与Hungarian算法 分配问题 指派问题 匈牙利算法 匈牙利方法是一种能够在多项式时间内解决分配问题(assignment problem)的组合优化算法.它由Harold Kuhn 与1 ...

  7. 组合数们&&错排&&容斥原理

    最近做了不少的组合数的题这里简单总结一下下 1.n,m很大p很小 且p为素数p要1e7以下的 可以接受On的时间和空间然后预处理阶乘 Lucas定理来做以下是代码 /*Hdu3037 Saving B ...

  8. FOJ ——Problem 1759 Super A^B mod C

     Problem 1759 Super A^B mod C Accept: 1368    Submit: 4639Time Limit: 1000 mSec    Memory Limit : 32 ...

  9. FOJ Problem 2271 X

    Problem 2271 X Accept: 55    Submit: 200Time Limit: 1500 mSec    Memory Limit : 32768 KB Problem Des ...

随机推荐

  1. ABAP RFC远程调用

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  2. poj 1410 线段相交判断

    http://poj.org/problem?id=1410 Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  3. WCF学习资源收集汇总

    1.WCF编程 http://www.cnblogs.com/wengyuli/category/217446.html 2.wcf热门问题编程示例 http://blog.csdn.net/book ...

  4. iOS - OC NSString 字符串

    前言 @interface NSString : NSObject <NSCopying, NSMutableCopying, NSSecureCoding> @interface NSM ...

  5. iOS - UILabel

    前言 NS_CLASS_AVAILABLE_IOS(2_0) @interface UILabel : UIView <NSCoding> @available(iOS 2.0, *) p ...

  6. 【51nod】1376 最长递增子序列的数量

    数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可能有很多个. ...

  7. md5加密过程

    import java.beans.Encoder; import java.security.MessageDigest; import java.security.NoSuchAlgorithmE ...

  8. Android应用Design Support Library完全使用实例

    阅读目录 2-1 综述 2-2 TextInputLayout控件 2-3 FloatingActionButton控件 2-4 Snackbar控件 2-5 TabLayout控件 2-6 Navi ...

  9. Java用WebSocket + tail命令实现Web实时日志

    原文:http://blog.csdn.net/xiao__gui/article/details/50041673 在Linux操作系统中,经常需要查看日志文件的实时输出内容,通常会使用tail - ...

  10. 【服务器环境搭建-Centos】tmpfs,【转载】

    转载来源:http://www.linuxidc.com/Linux/2013-12/93747.htm tmpfs介绍 tmpfs是一种虚拟内存文件系统,而不是块设备.是基于内存的文件系统,创建时不 ...