容斥定理所以可以用莫比乌斯函数来搞。逆向思维答案等于总和减去和他互质的。
那么设f[i]=∑a[j] i|j。ans[i]=sum- ∑mo[j]*f[j] 跟bzoj2440那道题挺像的都是利用莫比乌斯函数来做容斥定理。

结果因为修改的时候只修改<sqrt(n)的一直WA。。。吃枣药丸。。。

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<cmath>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define clr(x,c) memset(x,c,sizeof(x))
#define ll long long
int read(){
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
const int nmax=1e5+5;
const int inf=0x7f7f7f7f;
int a[nmax],f[nmax],mo[nmax],pe[nmax>>3];bool vis[nmax];
int main(){
int n=read(),m=read();rep(i,1,n) a[i]=read();
rep(i,1,n) rep(j,1,n/i) f[i]+=a[i*j];
mo[1]=1;int cnt=0,tp;
rep(i,2,n) {
if(!vis[i]) pe[++cnt]=i,mo[i]=-1;
rep(j,1,cnt){
tp=pe[j];if((ll)i*tp>n) break;vis[i*tp]=1;
if(i%tp==0) {
mo[i*tp]=0;break;
}mo[i*tp]=-mo[i];
}
}
int u,v,d,t,tmp;ll ans=0;
rep(i,1,m){
u=read();
if(u==1) {
v=read(),d=read();t=(int)sqrt(v);tmp=d-a[v];a[v]=d;
rep(j,1,t) if(v%j==0) f[j]+=tmp,f[v/j]+=tmp;
if(t*t==v) f[t]-=tmp;
}else{
v=read();d=(int)sqrt(v);ans=0;
rep(j,1,d) if(v%j==0) ans+=mo[j]*f[j]+mo[v/j]*f[v/j];
if(d*d==v) ans-=mo[d]*f[d];
printf("%lld\n",ans);
}
}
return 0;
}

  

基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
 收藏
 关注

这天,lyk又和gcd杠上了。
它拥有一个n个数的数列,它想实现两种操作。

1:将  ai 改为b。
2:给定一个数i,求所有 gcd(i,j)=1 时的  aj  的总和。

Input
第一行两个数n,Q(1<=n,Q<=100000)。
接下来一行n个数表示ai(1<=ai<=10^4)。
接下来Q行,每行先读入一个数A(1<=A<=2)。
若A=1,表示第一种操作,紧接着两个数i和b。(1<=i<=n,1<=b<=10^4)。
若B=2,表示第二种操作,紧接着一个数i。(1<=i<=n)。
Output
对于每个询问输出一行表示答案。
Input示例
5 3
1 2 3 4 5
2 4
1 3 1
2 4
Output示例
9
7

51nod1678 lyk与gcd的更多相关文章

  1. 51nod lyk与gcd

    1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将  ai  ...

  2. 51nod 1678 lyk与gcd | 容斥原理

    51nod 200题辣ψ(`∇´)ψ !庆祝! 51nod 1678 lyk与gcd | 容斥原理 题面 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作. 1:将 ai 改为 ...

  3. 51 Nod 1678 lyk与gcd

    1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将  ai  ...

  4. 51 Nod 1678 lyk与gcd(容斥原理)

    1678 lyk与gcd  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作 ...

  5. 1678 lyk与gcd

    1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将  ai 改为b.2:给定一个数i,求所有 ...

  6. 【51nod1678】lyk与gcd(莫比乌斯反演+枚举因数)

    点此看题面 大致题意: 一个长度为\(n\)的数组,实现两种操作:单点修改,给定\(i\)求\(\sum_{j=1}^na_j[gcd(i,j)=1]\). 莫比乌斯反演 考虑推一推询问操作的式子: ...

  7. [51nod]1678 lyk与gcd(莫比乌斯反演)

    题面 传送门 题解 和这题差不多 //minamoto #include<bits/stdc++.h> #define R register #define pb push_back #d ...

  8. 51nod部分容斥题解

    51nod1434 区间LCM 跟容斥没有关系.首先可以确定的一个结论是:对于任意正整数,有1*2*...*n | (k+1)*(k+2)*...*(k+n).因为这就是$C_{n+k}^{k}$. ...

  9. 51nod算法马拉松15

    智力彻底没有了...看来再也拿不到奖金了QAQ... A B君的游戏 因为数据是9B1L,所以我们可以hash试一下数据... #include<cstdio> #include<c ...

随机推荐

  1. JDK各个版本下载页面

    http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase7-521261.html 需 ...

  2. MYSQL注入天书之order by后的injection

    Background-9  order by后的injection 此处应介绍order by后的注入以及limit注入,我们结合less-46更容易讲解,(在less46中详细讲解)所以此处可根据l ...

  3. ASP.NET 应用程序安全

    原文:http://msdn.microsoft.com/zh-cn/magazine/hh708755.aspx 一.跨站点脚本 简介 XSS 攻击是指将脚本恶意注入用户的浏览会话,这通常在用户不知 ...

  4. WCF Service的Restfull风格

    怎样构建? •您需要什么样的资源? •将使用哪些 URI 表示这些资源? •每个 URI 将支持统一接口的哪些部件(HTTP 动词)?    URI的处理   •UriTemplate –System ...

  5. hdu 1800 Flying to the Mars(简单模拟,string,字符串)

    题目 又来了string的基本用法 //less than 30 digits //等级长度甚至是超过了int64,所以要用字符串来模拟,然后注意去掉前导零 //最多重复的个数就是答案 //关于str ...

  6. HDU 4572 Bottles Arrangement(找规律,仔细读题)

    题目 //找规律,123321123321123321…发现这样排列恰好可以错开 // 其中注意题中数据范围: M是行,N是列,3 <= N < 2×M //则猜测:m,m,m-1,m-1 ...

  7. 15.RDD 创建内幕解析

    第15课:RDD创建内幕 RDD的创建方式 Spark应用程序运行过程中,第一个RDD代表了Spark应用程序输入数据的来源,之后通过Trasformation来对RDD进行各种算子的转换,来实现具体 ...

  8. maven本地仓库.m2文件夹路径讲解

    Maven是一个项目管理工具,它包含了一个项目对象模型 (Project Object Model),一组标准集合,一个项目生命周期(Project Lifecycle),一个依赖管理系统(Depen ...

  9. OnClientClick="return confirm('确定要删除吗?')"

    OnClientClick="return confirm('确定要删除吗?')"   -----------------------前台代码 OnClientClick用于执行客 ...

  10. chmod u+x ./j2sdk-1_4_2_04-linux-i586.bin的含义

    这句话是改变当前目录下的j2sdk-1_4_2_04-linux-i586.bin文件的权限. 具体地说: chmod命令用于改变文件权限. u 这里指文件所有者 +x 添加可执行权限 ./ 指当前目 ...