Counting Rectangles

Time Limit: 1000MS Memory Limit: 10000K

Total Submissions: 1043 Accepted: 546

Description

We are given a figure consisting of only horizontal and vertical line segments. Our goal is to count the number of all different rectangles formed by these segments. As an example, the number of rectangles in the Figures 1 and 2 are 5 and 0 respectively.

There are many intersection points in the figure. An intersection point is a point shared by at least two segments. The input line segments are such that each intersection point comes from the intersection of exactly one horizontal segment and one vertical segment.

Input

The first line of the input contains a single number M, which is the number of test cases in the file (1 <= M <= 10), and the rest of the file consists of the data of the test cases. Each test case begins with a line containing s (1 <= s <= 100), the number of line segments in the figure. It follows by s lines, each containing x and y coordinates of two end points of a segment respectively. The coordinates are integers in the range of 0 to 1000.

Output

The output for each test case is the number of all different rectangles in the figure described by the test case. The output for each test case must be written on a separate line.

Sample Input

2

6

0 0 0 20

0 10 25 10

20 10 20 20

0 0 10 0

10 0 10 20

0 20 20 20

3

5 0 5 20

15 5 15 25

0 10 25 10

Sample Output

5

0

给你水平还有竖直的线段判断可以组成多少的矩形

暴力姿势

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define LL long long
using namespace std; const int MAX = 11000; struct node
{
int x1;
int y1;
int x2;
int y2;
}H[120],S[120]; int top1,top2; bool Judge(int h,int s)
{
if(S[s].y1>=H[h].y1&&S[s].y1<=H[h].y2&&H[h].x2>=S[s].x1&&H[h].x2<=S[s].x2)
{
return true;
}
return false;
} int main()
{
int T;
int n;
int x1,y1,x2,y2;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
top1=0;
top2=0;
for(int i=0;i<n;i++)
{
scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
if(x1==x2)
{
H[top1].x1=x1;H[top1].y1=min(y1,y2);
H[top1].x2=x2;H[top1].y2=max(y1,y2);
top1++;
}
else if(y1==y2)
{
S[top2].x1=min(x1,x2);S[top2].y1=y1;
S[top2].x2=max(x1,x2);S[top2].y2=y2;
top2++;
}
}
int sum=0;
for(int i=0;i<top1;i++)
{
for(int j=0;j<top2;j++)
{
if(Judge(i,j))
{
for(int k=i+1;k<top1;k++)
{
if(Judge(k,j))
{
for(int s=j+1;s<top2;s++)
{
if(Judge(i,s)&&Judge(k,s))
{
sum++;
}
}
}
}
}
}
}
printf("%d\n",sum);
}
return 0;
}

Counting Rectangles的更多相关文章

  1. Project Euler 85 :Counting rectangles 数长方形

    Counting rectangles By counting carefully it can be seen that a rectangular grid measuring 3 by 2 co ...

  2. UVA - 10574 Counting Rectangles

    Description Problem H Counting Rectangles Input: Standard Input Output:Standard Output Time Limit: 3 ...

  3. UVA 10574 - Counting Rectangles(枚举+计数)

    10574 - Counting Rectangles 题目链接 题意:给定一些点,求可以成几个边平行于坐标轴的矩形 思路:先把点按x排序,再按y排序.然后用O(n^2)的方法找出每条垂直x轴的边,保 ...

  4. Codeforces Round #219 (Div. 2) D. Counting Rectangles is Fun 四维前缀和

    D. Counting Rectangles is Fun time limit per test 4 seconds memory limit per test 256 megabytes inpu ...

  5. Codeforces 372 B. Counting Rectangles is Fun

    $ >Codeforces \space 372 B.  Counting Rectangles is Fun<$ 题目大意 : 给出一个 \(n \times m\) 的 \(01\) ...

  6. [ACM_暴力][ACM_几何] ZOJ 1426 Counting Rectangles (水平竖直线段组成的矩形个数,暴力)

    Description We are given a figure consisting of only horizontal and vertical line segments. Our goal ...

  7. UVA 10574 - Counting Rectangles 计数

    Given n points on the XY plane, count how many regular rectangles are formed. A rectangle is regular ...

  8. Codeforces 372B Counting Rectangles is Fun:dp套dp

    题目链接:http://codeforces.com/problemset/problem/372/B 题意: 给你一个n*m的01矩阵(1 <= n,m <= 40). 然后有t组询问( ...

  9. Codeforces 372B Counting Rectangles is Fun

    http://codeforces.com/problemset/problem/372/B 题意:每次给出一个区间,求里面有多少个矩形 思路:预处理,sum[i][j][k][l]代表以k,l为右下 ...

随机推荐

  1. Java 分布式应用

  2. java-语句

    JAVA语句 1.顺序语句(用:结束)(一个分号也是一个语句)(多条语句形成符合语句) 2.分支语句(又称条件语句) 1. if 语句 例:   int a=10 if(a>0) {System ...

  3. curl命令使用(转)

    转自:http://www.cnblogs.com/sunada2005/p/3829772.html curl命令可以用来构造http请求.参数有很多,常用的参数如下: 通用语法:curl [opt ...

  4. Winform ListView 元素拖动

    //ListView 属性 /* AllowDrop : True */ ListView objLVDrag; private void listView_DragDrop(object sende ...

  5. 活动组件(五):一个activity的例子

    建立两个Activity,一个是NormalActivity,另一个是DialogActivity.首先建立这两个Activity的布局文件,如下图: 然后编写这连个Activity,如下: 接着对这 ...

  6. 结构体. ->操作符的内涵

    实质上就是结构体成员相对于结构体大变量的偏移地址, 操作符所干的事情就是寻址.是偏移,是偏移,是偏移.偏移后的地址

  7. Spring day01

    1 实例化Spring容器 新建springday01项目1.F盘jar/Spring/first/五个jar包拷贝到lib下,复制xml文件到项目first包下2.First.java测试如何启动容 ...

  8. java 选择排序法

    public class Test3 { /**@author shaobn * @param 选择排序:将a.length - i个元素分别和第i个元素相比较,小的话就将值调换.依次递减进行排列 * ...

  9. JAVA测试装饰者模式

    package shb.java.demo; /** * 测试装饰者模式 * @package :shb.java.demoJava02 * @author shaobn * @Describe : ...

  10. angular Creating a Directive that Adds Event Listeners

    <span my-draggable>Drag ME</span> angular.module('dragModule', []) .directive('myDraggab ...