(七)7.2 应用机器学习方法的技巧,准确率,召回率与 F值
建立模型
当使用机器学习的方法来解决问题时,比如垃圾邮件分类等,一般的步骤是这样的:
1)从一个简单的算法入手这样可以很快的实现这个算法,并且可以在交叉验证集上进行测试;
2)画学习曲线以决定是否更多的数据,更多的特征或者其他方式会有所帮助;
3)人工检查那些算法预测错误的例子(在交叉验证集上),看看能否找到一些产生错误的原因。
评估模型
首先,引入一个概念,非对称性分类。考虑癌症预测问题,y=1 代表癌症,y=0 代表没有癌症,对于一个数据集,我们建立logistic 回归模型,经过以上建模的步骤,得到一个优化的模型,错误率仅为1%,这貌似是一个很好的结果,但考虑数据集若仅有0.05%的正例(y=1),那么我们直接预测所有y=0,我们得到的模型的错误率仅为0.5%,这便是非对称分类的问题,这样的问题仅考虑错误率是有风险的。
下面引入一种标准的衡量方法:Precision/Recall(精确度和召回率),这种度量最早出现在信息检索问题中的,如下:

在机器学习的模型中,也可以用这种评估方法,具体如下:

其中:
True Positive (真正例, TP)被模型预测为正的正样本;可以称作判断为真的正确率
True Negative(真负例 , TN)被模型预测为负的负样本 ;可以称作判断为假的正确率
False Positive (假正例, FP)被模型预测为正的负样本;可以称作误报率
False Negative(假负例 , FN)被模型预测为负的正样本;可以称作漏报率
现在需要考虑权衡Precision/Recall:
以logistic 回归为例:

假设我们非常有把握时才预测病人得癌症(y=1), 这个时候,我们常常将阈值设置的很高,FP变小,FN增大,这会导致高精确度,低召回率(Higher precision, lower recall);
假设我们不希望将太多的癌症例子错分(避免假负例,本身得了癌症,确被分类为没有得癌症), 这个时候,阈值就可以设置的低一些,FP变大,FN变小,这又会导致高召回率,低精确度(Higher recall, lower precision);

以上的描述可以用如下的PR曲线来描述,一般准确率提高,召回率会下降:

关于如何权衡准确率与召回率:
如果是做搜索,那就是保证召回的情况下提升准确率;如果做疾病监测、反垃圾,则是保准确率的条件下,提升召回。在两者都要求高的情况下,可以用F1来衡量。

(七)7.2 应用机器学习方法的技巧,准确率,召回率与 F值的更多相关文章
- CS229 7.2 应用机器学习方法的技巧,准确率,召回率与 F值
建立模型 当使用机器学习的方法来解决问题时,比如垃圾邮件分类等,一般的步骤是这样的: 1)从一个简单的算法入手这样可以很快的实现这个算法,并且可以在交叉验证集上进行测试: 2)画学习曲线以决定是否更多 ...
- 美团网基于机器学习方法的POI品类推荐算法
美团网基于机器学习方法的POI品类推荐算法 前言 在美团商家数据中心(MDC),有超过100w的已校准审核的POI数据(我们一般将商家标示为POI,POI基础信息包括:门店名称.品类.电话.地址.坐标 ...
- Stanford机器学习---第六讲. 怎样选择机器学习方法、系统
原文:http://blog.csdn.net/abcjennifer/article/details/7797502 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- Android群英传》读书笔记 (3) 第六章 Android绘图机制与处理技巧 + 第七章 Android动画机制与使用技巧
第六章 Android绘图机制与处理技巧 1.屏幕尺寸信息屏幕大小:屏幕对角线长度,单位“寸”:分辨率:手机屏幕像素点个数,例如720x1280分辨率:PPI(Pixels Per Inch):即DP ...
- 关于”机器学习方法“,"深度学习方法"系列
"机器学习/深度学习方法"系列,我本着开放与共享(open and share)的精神撰写,目的是让很多其它的人了解机器学习的概念,理解其原理,学会应用.如今网上各种技术类文章非常 ...
- R语言进行机器学习方法及实例(一)
版权声明:本文为博主原创文章,转载请注明出处 机器学习的研究领域是发明计算机算法,把数据转变为智能行为.机器学习和数据挖掘的区别可能是机器学习侧重于执行一个已知的任务,而数据发掘是在大数据中寻找有 ...
- 机器学习方法、距离度量、K_Means
特征向量 1.特征向量:以人为例,每个元素可能就对应这人的某些方面,这就是特征,例如:身高.年龄.性别.国际....2.特征工程:目的就是将现有数据中可作为信号的特征与那些仅是噪声的特征区分开来:当数 ...
- 不平衡数据下的机器学习方法简介 imbalanced time series classification
imbalanced time series classification http://www.vipzhuanli.com/pat/books/201510229367.5/2.html?page ...
- 基于CRF工具的机器学习方法命名实体识别的过
[转自百度文库] 基于CRF工具的机器学习方法命名实体识别的过程 | 浏览:226 | 更新:2014-04-11 09:32 这里只讲基本过程,不涉及具体实现,我也是初学者,想给其他初学者一些帮助, ...
随机推荐
- unity3d设置3D模型显示在2D背景之前(多个相机分层显示)(转)
解决步骤: 1.添加一个摄像机,命名为BackgroundCamera,然后在Layer添加一个background层.并且将plane拖放到改相机节点下. 然后将BackgroundCamera和P ...
- 重温《js权威指南》 第2-3章
第二章 语法结构 2.1 js区分大小写,html不区分大小写 2.5 注意分号,如果没有分号,解释器会试图解析js,并在不能解析的地方加分号 第三章 值和变量 ...
- 【转】SIP初步
1.什么是SIP SIP(会话发起协议)属于IP应用层协议,用于在IP网上为用户提供会话应用.会话(Session)指两方或多方用户之间的语音.视频.及其他媒体形式的通信,具体可能是IP电话.会议.即 ...
- 天使投资、VC 以及 PE 的区别是什么?
如果满足于“阶段不同”这个简单的回答,那你可能错过了一个思考资本与企业发展之间关系的机会. 首先要交待一下,在大众语境中,angel/VC/PE三者都可认为是VC,也就是人们常说的风险投资,在国内官方 ...
- Bootstrap下拉菜单dropdown-menu
1.步骤 (1)要做为下拉菜单的li增加class="dropdown" (2)为li中文字添加超链接<a data-toggle="dropdown" ...
- CentOS查看内核版本,位数,版本号
1)[root@localhost ~]# cat /proc/version Linux version 2.6.18-194.el5 (mockbuild@builder10.CentOS.org ...
- Java Map各遍历方式的性能比较
1. 阐述 对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多.理由是:entrySet方法一次拿到所有key和value的集合:而keySet拿到的 ...
- JSP下载txt 和 Excel两种文件
JSP下载txt 和 Excel两种文件 jsp 下载txt文件和excel文件 jsp 下载txt文件和excel文件 最近做了个用jsp下载的页面 将代码贴出来 权作记录吧 1 下载txt文件 ...
- Oracle ->> 生成测试数据
declare v_exists_table number; begin select count(*) into v_exists_table from all_tables where table ...
- Linux 下Git的安装和配置
Git是分布式的版本控制系统,实际上是不需要固定的服务器的,Git与svn的最大区别是,它的使用流程不需要联机,可以先将对代码的修改,评论,保存在本机.等上网之后,再实时推送过去.同时它创建分支与合并 ...