BZOJ 1296: [SCOI2009]粉刷匠 分组DP
1296: [SCOI2009]粉刷匠
Description
Input
Output
Sample Input
111111
000000
001100
Sample Output
HINT
30%的数据,满足 1 <= N,M <= 10 ; 0 <= T <= 100 。
100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。
题解:PoPoQQQ
给定n*m的木板,每个点需要刷成1和0两种颜色之一,每次只能刷一行中连续的一段,一个点只能刷一次,求T刷子最多能刷对多少个点
首先对每行拆开处理 令f[i][j]为用i刷子刷前j个格子最多刷对多少个点 动规处理出这一行刷i刷子最多能刷对多少个点 然后分组背包即可
//meek
///#include<bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
#define pb push_back
#define fi first
#define se second
#define MP make_pair const int N=;
const ll INF = 1ll<<;
const int inf = <<;
const int mod= ;
const int M = ; char s[N];
int f[N][N],n,m,K,a[N][N];
void DP(int pos) {
memset(f,,sizeof(f));
f[][] = ;
for(int i=;i<=m;i++) {
for(int j=i;j<=m;j++) {
int cnt[] = {};
for(int k=j;k>=i;k--) {
cnt[s[k]-''] ++;
f[i][j] = max(f[i][j],f[i-][k-]+max(cnt[],cnt[]));
}
}
}
for(int i = ;i <= m; i++) a[pos][i] = f[i][m];
} int fenzu() {
int g[N][N*N];
memset(g,,sizeof(g));
g[][] = ;
for(int i=;i<=n;i++) {
for(int j=;j<=m;j++) {
for(int k=K;k>=j;k--) g[i][k] = max(g[i][k],g[i-][k-j]+a[i][j]);
}
}
return g[n][K];
}
int main() {
scanf("%d%d%d",&n,&m,&K);
for(int i=;i<=n;i++) {
scanf("%s",s+);
DP(i);
}
printf("%d\n",fenzu());
return ;
}
代码
BZOJ 1296: [SCOI2009]粉刷匠 分组DP的更多相关文章
- bzoj 1296: [SCOI2009]粉刷匠【dp+背包dp】
参考:http://hzwer.com/3099.html 神题神题 其实只要知道思路就有点都不难-- 先对每一行dp,设g[i][j]为这行前i个格子粉刷了k次最大粉刷正确数,随便n^3一下就行 设 ...
- BZOJ 1296: [SCOI2009]粉刷匠( dp )
dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] ) ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...
- 1296: [SCOI2009]粉刷匠[多重dp]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1919 Solved: 1099[Submit][Statu ...
- bzoj 1296: [SCOI2009]粉刷匠
Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...
- bzoj 1296: [SCOI2009]粉刷匠 动态规划
Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...
- bzoj1296: [SCOI2009]粉刷匠(DP)
1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...
- 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)
[SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...
- 2018.09.02 bzoj1296: [SCOI2009]粉刷匠(dp套dp)
传送门 dp好题. 先推出对于每一行花费k次能最多粉刷的格子数. 然后再推前i行花费k次能最多粉刷的格子数. 代码: #include<bits/stdc++.h> #define N 5 ...
- BZOJ1296 [SCOI2009]粉刷匠 【dp】
题目 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被粉刷 ...
随机推荐
- SQL Server Analysis Services 数据挖掘
假如你有一个购物类的网站,那么你如何给你的客户来推荐产品呢?这个功能在很多 电商类网站都有,那么,通过SQL Server Analysis Services的数据挖掘功能,你也可以轻松的来构建类似的 ...
- python生成带参数二维码
#coding:utf8 import urllib2 import urllib import json import string import random class WebChat(obje ...
- iOS学习之Object-C语言继承和初始化方法
一.继承 1.面向对象的三大特性:封装,继承,多态. 面向对象提供了继承特性.把公共的方法和实例变量写在父类里,子类只需要写自己独有的实例变量和方法即可.继承既能保证类的完整,又能简化代码. ...
- homework-01 "最大子数组之和"的解决过程
看到这个题目,我首先想到就是暴力解决 求出所有的子数组的和,取出最大值即可 但其中是可以有优化的 如 子数组[3:6]可以用[3:5]+[6]来计算 即可以将前面的计算结果保留下来,减少后面的重复计算 ...
- OC中数组类NSArray的详解,数组的遍历(二)
数组类的便利 1.for循环(大家都会的...) 2.NSEmunerator 3.for in 首先重点说下 第二种NSEmunerator枚举器,系统声明是 @interface NSEnumer ...
- MATLAB GUI程序设计中使文本框接收多行输入的方法
对于文本框来说 Max属性于Min属性数值之差小于等于1时,仅接收单行输入 大于1时,接受多行输入 对于多行情况,set/get到的String应为cell 本系列文章允许转载,转载请保留全文! [说 ...
- 按键精灵实现自动退出的MsgBox消息框
要实现自动倒计时退出的消息框,代码如下: Set wsh = CreateObject("WScript.Shell") wsh.popup "设置完毕,3秒后自动退出! ...
- JavaEDU614 团队第三周项目总结
JavaEDU614 团队第三周项目总结 本周,根据项目计划完成模块的设计代码 本项目主要是完成俄罗斯方块的基本操作.用户可以自己练习和娱乐.需要满足以下几点要求. (1)界面控制游戏开始.暂停和结束 ...
- Careercup - Google面试题 - 5377673471721472
2014-05-08 22:42 题目链接 原题: How would you split a search query across multiple machines? 题目:如何把一个搜索que ...
- jQuery Dialog弹出层对话框插件
Dialog.js的相关注释已经添加,可以按照注释,进行相关样式的修改,适用于自定义的各个系统! dialog.js /** * jQuery的Dialog插件. * * @param object ...