caffe: test code for PETA dataset
test code for PETA datasets ....
#ifdef WITH_PYTHON_LAYER
#include "boost/python.hpp"
namespace bp = boost::python;
#endif #include <glog/logging.h> #include <cstring>
#include <map>
#include <string>
#include <vector> #include "boost/algorithm/string.hpp"
#include "caffe/caffe.hpp"
#include "caffe/util/signal_handler.h"
#include <fstream>
#include <sstream>
#include <iostream> using caffe::Blob;
using caffe::Caffe;
using caffe::Net;
using caffe::Layer;
using caffe::Solver;
using caffe::shared_ptr;
using caffe::string;
using caffe::Timer;
using caffe::vector;
using std::ostringstream;
using namespace std; DEFINE_string(gpu, "",
"Optional; run in GPU mode on given device IDs separated by ','."
"Use '-gpu all' to run on all available GPUs. The effective training "
"batch size is multiplied by the number of devices.");
DEFINE_string(solver, "",
"The solver definition protocol buffer text file.");
DEFINE_string(model, "",
"The model definition protocol buffer text file..");
DEFINE_string(snapshot, "",
"Optional; the snapshot solver state to resume training.");
DEFINE_string(weights, "",
"Optional; the pretrained weights to initialize finetuning, "
"separated by ','. Cannot be set simultaneously with snapshot.");
// DEFINE_int32(iteratinos, 29329,
DEFINE_int32(iterations, ,
"The number of iterations to run.");
DEFINE_string(sigint_effect, "stop",
"Optional; action to take when a SIGINT signal is received: "
"snapshot, stop or none.");
DEFINE_string(sighup_effect, "snapshot",
"Optional; action to take when a SIGHUP signal is received: "
"snapshot, stop or none."); // A simple registry for caffe commands.
typedef int (*BrewFunction)();
typedef std::map<caffe::string, BrewFunction> BrewMap;
BrewMap g_brew_map; #define RegisterBrewFunction(func) \
namespace { \
class __Registerer_##func { \
public: /* NOLINT */ \
__Registerer_##func() { \
g_brew_map[#func] = &func; \
} \
}; \
__Registerer_##func g_registerer_##func; \
} static BrewFunction GetBrewFunction(const caffe::string& name) {
if (g_brew_map.count(name)) {
return g_brew_map[name];
} else {
LOG(ERROR) << "Available caffe actions:";
for (BrewMap::iterator it = g_brew_map.begin();
it != g_brew_map.end(); ++it) {
LOG(ERROR) << "\t" << it->first;
}
LOG(FATAL) << "Unknown action: " << name;
return NULL; // not reachable, just to suppress old compiler warnings.
}
} // Parse GPU ids or use all available devices
static void get_gpus(vector<int>* gpus) {
if (FLAGS_gpu == "all") {
int count = ;
#ifndef CPU_ONLY
CUDA_CHECK(cudaGetDeviceCount(&count));
#else
NO_GPU;
#endif
for (int i = ; i < count; ++i) {
gpus->push_back(i);
}
} else if (FLAGS_gpu.size()) {
vector<string> strings;
boost::split(strings, FLAGS_gpu, boost::is_any_of(","));
for (int i = ; i < strings.size(); ++i) {
gpus->push_back(boost::lexical_cast<int>(strings[i]));
}
} else {
CHECK_EQ(gpus->size(), );
}
} // caffe commands to call by
// caffe <command> <args>
//
// To add a command, define a function "int command()" and register it with
// RegisterBrewFunction(action); // Device Query: show diagnostic information for a GPU device.
int device_query() {
LOG(INFO) << "Querying GPUs " << FLAGS_gpu;
vector<int> gpus;
get_gpus(&gpus);
for (int i = ; i < gpus.size(); ++i) {
caffe::Caffe::SetDevice(gpus[i]);
caffe::Caffe::DeviceQuery();
}
return ;
}
RegisterBrewFunction(device_query); // Load the weights from the specified caffemodel(s) into the train and
// test nets.
void CopyLayers(caffe::Solver<float>* solver, const std::string& model_list) {
std::vector<std::string> model_names;
boost::split(model_names, model_list, boost::is_any_of(",") );
for (int i = ; i < model_names.size(); ++i) {
LOG(INFO) << "Finetuning from " << model_names[i];
solver->net()->CopyTrainedLayersFrom(model_names[i]);
for (int j = ; j < solver->test_nets().size(); ++j) {
solver->test_nets()[j]->CopyTrainedLayersFrom(model_names[i]);
}
}
} // Translate the signal effect the user specified on the command-line to the
// corresponding enumeration.
caffe::SolverAction::Enum GetRequestedAction(
const std::string& flag_value) {
if (flag_value == "stop") {
return caffe::SolverAction::STOP;
}
if (flag_value == "snapshot") {
return caffe::SolverAction::SNAPSHOT;
}
if (flag_value == "none") {
return caffe::SolverAction::NONE;
}
LOG(FATAL) << "Invalid signal effect \""<< flag_value << "\" was specified";
} // Train / Finetune a model.
int train() {
CHECK_GT(FLAGS_solver.size(), ) << "Need a solver definition to train.";
CHECK(!FLAGS_snapshot.size() || !FLAGS_weights.size())
<< "Give a snapshot to resume training or weights to finetune "
"but not both."; caffe::SolverParameter solver_param;
caffe::ReadProtoFromTextFileOrDie(FLAGS_solver, &solver_param); // If the gpus flag is not provided, allow the mode and device to be set
// in the solver prototxt.
if (FLAGS_gpu.size() ==
&& solver_param.solver_mode() == caffe::SolverParameter_SolverMode_GPU) {
if (solver_param.has_device_id()) {
FLAGS_gpu = "" +
boost::lexical_cast<string>(solver_param.device_id());
} else { // Set default GPU if unspecified
FLAGS_gpu = "" + boost::lexical_cast<string>();
}
} vector<int> gpus;
get_gpus(&gpus);
if (gpus.size() == ) {
LOG(INFO) << "Use CPU.";
Caffe::set_mode(Caffe::CPU);
} else {
ostringstream s;
for (int i = ; i < gpus.size(); ++i) {
s << (i ? ", " : "") << gpus[i];
}
LOG(INFO) << "Using GPUs " << s.str(); solver_param.set_device_id(gpus[]);
Caffe::SetDevice(gpus[]);
Caffe::set_mode(Caffe::GPU);
Caffe::set_solver_count(gpus.size());
} caffe::SignalHandler signal_handler(
GetRequestedAction(FLAGS_sigint_effect),
GetRequestedAction(FLAGS_sighup_effect)); shared_ptr<caffe::Solver<float> >
solver(caffe::GetSolver<float>(solver_param)); solver->SetActionFunction(signal_handler.GetActionFunction()); if (FLAGS_snapshot.size()) {
LOG(INFO) << "Resuming from " << FLAGS_snapshot;
solver->Restore(FLAGS_snapshot.c_str());
} else if (FLAGS_weights.size()) {
CopyLayers(solver.get(), FLAGS_weights);
} if (gpus.size() > ) {
caffe::P2PSync<float> sync(solver, NULL, solver->param());
sync.run(gpus);
} else {
LOG(INFO) << "Starting Optimization";
solver->Solve();
}
LOG(INFO) << "Optimization Done.";
return ;
}
RegisterBrewFunction(train); // Test: score a model.
int test() {
CHECK_GT(FLAGS_model.size(), ) << "Need a model definition to score.";
CHECK_GT(FLAGS_weights.size(), ) << "Need model weights to score."; // Set device id and mode
vector<int> gpus;
get_gpus(&gpus);
if (gpus.size() != ) {
LOG(INFO) << "Use GPU with device ID " << gpus[];
Caffe::SetDevice(gpus[]);
Caffe::set_mode(Caffe::GPU);
} else {
LOG(INFO) << "Use CPU.";
Caffe::set_mode(Caffe::CPU);
} // Instantiate the caffe net.
Net<float> caffe_net(FLAGS_model, caffe::TEST);
caffe_net.CopyTrainedLayersFrom(FLAGS_weights);
LOG(INFO) << "Running for " << FLAGS_iterations << " iterations."; vector<Blob<float>* > bottom_vec;
vector<int> test_score_output_id;
vector<float> test_score;
// float loss = 0;
int nu = ;
// int num = 0;
// int num2 = 0; const int att_num = ;
static int TP[att_num] = {};
static int TN[att_num] = {};
static int FP[att_num] = {};
static int FN[att_num] = {}; for (int i = ; i < FLAGS_iterations; ++i) { // num of images; test image:7600 LOG(INFO) << "batch " << i << "/" << FLAGS_iterations << ", waiting..."; float iter_loss;
const vector<Blob<float>*>& result =
caffe_net.Forward(bottom_vec, &iter_loss); // outPut result LOG(INFO) << "result.size: " << result.size() << " " << result[]->count() << " " << result[]->count()
<< " " << result[]->count() ; const float* result_index = result[]->cpu_data(); // index
const float* result_score = result[]->cpu_data(); // predict score;
const float* result_label = result[]->cpu_data(); // Groundtruth label; for (int k = ; k < att_num; ++k) { // for 35 attributes // const float index_ = result_index;
const float Predict_score = result_score[k];
const float GT_label = result_label[k]; float threshold_ = 0.4;
if ((Predict_score < threshold_) && (int(GT_label) == ))
TN[k] = TN[k] + ;
if ((Predict_score > threshold_) && (int(GT_label) == ))
FP[k] = FP[k] + ;
if ((Predict_score < threshold_) && (int(GT_label) == ))
FN[k] = FN[k] + ;
if ((Predict_score > threshold_) && (int(GT_label) == ))
TP[k] = TP[k] + ; // write the predicted score into txt files
ofstream file("/home/wangxiao/Downloads/whole_benchmark/Sec_Batch_/sec_Batch_unlabel.txt",ios::app);
if(!file) return -; if(nu < att_num){
file << Predict_score << " " ;
nu++;
} else {
nu = ;
file << endl;
file << Predict_score << " " ;
}
file.close(); // // write the Index into txt files
// ofstream file2("/home/wangxiao/Downloads/caffe-master/wangxiao/bvlc_alexnet/43_attributes_index.txt",ios::app);
// if(!file2) return -1; // if(num < att_num){
// file2 << index_ << " " ;
// num++;
// } else {
// num = 1;
// file2 << endl;
// file2 << index_ << " " ;
// }
// file2.close(); // // write the GroundTruth Label into txt files
// ofstream file3("/home/wangxiao/Downloads/whole_benchmark/Unlabeled_data/Unlabeled_AnHui_label.txt",ios::app);
// if(!file3) return -1; // if(num2 < att_num){
// file3 << GT_label << " " ;
// num2++;
// } else {
// num2 = 1;
// file3 << endl;
// file3 << GT_label << " " ;
// }
// file3.close(); }
} double aver_accuracy = ; for (int k = ; k < att_num; ++k){
aver_accuracy += 0.5*(double(TP[k])/(TP[k]+FN[k]) + double(TN[k])/(TN[k] + FP[k]));
LOG(INFO) << "Accuracy: " << k << " "
<< 0.5*(double(TP[k])/(TP[k]+FN[k]) + double(TN[k])/(TN[k] + FP[k]));
LOG(INFO) << "TP = " << double(TP[k]);
LOG(INFO) << "FN = " << double(FN[k]);
LOG(INFO) << "FP = " << double(FP[k]);
LOG(INFO) << "TN = " << double(TN[k]);
} LOG(INFO) << "####################";
LOG(INFO) << " ";
LOG(INFO) << "Average_accuracy: " << aver_accuracy / att_num;
LOG(INFO) << " ";
LOG(INFO) << "####################"; return ;
} RegisterBrewFunction(test); // Time: benchmark the execution time of a model.
int time() {
CHECK_GT(FLAGS_model.size(), ) << "Need a model definition to time."; // Set device id and mode
vector<int> gpus;
get_gpus(&gpus);
if (gpus.size() != ) {
LOG(INFO) << "Use GPU with device ID " << gpus[];
Caffe::SetDevice(gpus[]);
Caffe::set_mode(Caffe::GPU);
} else {
LOG(INFO) << "Use CPU.";
Caffe::set_mode(Caffe::CPU);
}
// Instantiate the caffe net.
Net<float> caffe_net(FLAGS_model, caffe::TRAIN); // Do a clean forward and backward pass, so that memory allocation are done
// and future iterations will be more stable.
LOG(INFO) << "Performing Forward";
// Note that for the speed benchmark, we will assume that the network does
// not take any input blobs.
float initial_loss;
caffe_net.Forward(vector<Blob<float>*>(), &initial_loss);
LOG(INFO) << "Initial loss: " << initial_loss;
LOG(INFO) << "Performing Backward";
caffe_net.Backward(); const vector<shared_ptr<Layer<float> > >& layers = caffe_net.layers();
const vector<vector<Blob<float>*> >& bottom_vecs = caffe_net.bottom_vecs();
const vector<vector<Blob<float>*> >& top_vecs = caffe_net.top_vecs();
const vector<vector<bool> >& bottom_need_backward =
caffe_net.bottom_need_backward();
LOG(INFO) << "*** Benchmark begins ***";
LOG(INFO) << "Testing for " << FLAGS_iterations << " iterations.";
Timer total_timer;
total_timer.Start();
Timer forward_timer;
Timer backward_timer;
Timer timer;
std::vector<double> forward_time_per_layer(layers.size(), 0.0);
std::vector<double> backward_time_per_layer(layers.size(), 0.0);
double forward_time = 0.0;
double backward_time = 0.0;
for (int j = ; j < FLAGS_iterations; ++j) {
Timer iter_timer;
iter_timer.Start();
forward_timer.Start();
for (int i = ; i < layers.size(); ++i) {
timer.Start();
layers[i]->Forward(bottom_vecs[i], top_vecs[i]);
forward_time_per_layer[i] += timer.MicroSeconds();
}
forward_time += forward_timer.MicroSeconds();
backward_timer.Start();
for (int i = layers.size() - ; i >= ; --i) {
timer.Start();
layers[i]->Backward(top_vecs[i], bottom_need_backward[i],
bottom_vecs[i]);
backward_time_per_layer[i] += timer.MicroSeconds();
}
backward_time += backward_timer.MicroSeconds();
LOG(INFO) << "Iteration: " << j + << " forward-backward time: "
<< iter_timer.MilliSeconds() << " ms.";
}
LOG(INFO) << "Average time per layer: ";
for (int i = ; i < layers.size(); ++i) {
const caffe::string& layername = layers[i]->layer_param().name();
LOG(INFO) << std::setfill(' ') << std::setw() << layername <<
"\tforward: " << forward_time_per_layer[i] / /
FLAGS_iterations << " ms.";
LOG(INFO) << std::setfill(' ') << std::setw() << layername <<
"\tbackward: " << backward_time_per_layer[i] / /
FLAGS_iterations << " ms.";
}
total_timer.Stop();
LOG(INFO) << "Average Forward pass: " << forward_time / /
FLAGS_iterations << " ms.";
LOG(INFO) << "Average Backward pass: " << backward_time / /
FLAGS_iterations << " ms.";
LOG(INFO) << "Average Forward-Backward: " << total_timer.MilliSeconds() /
FLAGS_iterations << " ms.";
LOG(INFO) << "Total Time: " << total_timer.MilliSeconds() << " ms.";
LOG(INFO) << "*** Benchmark ends ***";
return ;
}
RegisterBrewFunction(time); int main(int argc, char** argv) {
// Print output to stderr (while still logging).
FLAGS_alsologtostderr = ;
// Usage message.
gflags::SetUsageMessage("command line brew\n"
"usage: caffe <command> <args>\n\n"
"commands:\n"
" train train or finetune a model\n"
" test score a model\n"
" device_query show GPU diagnostic information\n"
" time benchmark model execution time");
// Run tool or show usage.
caffe::GlobalInit(&argc, &argv);
if (argc == ) {
#ifdef WITH_PYTHON_LAYER
try {
#endif
return GetBrewFunction(caffe::string(argv[]))();
#ifdef WITH_PYTHON_LAYER
} catch (bp::error_already_set) {
PyErr_Print();
return ;
}
#endif
} else {
gflags::ShowUsageWithFlagsRestrict(argv[], "tools/caffe");
}
}
caffe: test code for PETA dataset的更多相关文章
- caffe: test code for Deep Learning approach
#include <stdio.h> // for snprintf #include <string> #include <vector> #include &q ...
- caffe: test code Check failed: K_ == new_K (768 vs. 1024) Input size incompatible with inner product parameters.
I0327 20:24:22.966171 20521 net.cpp:849] Copying source layer drop7I0327 20:24:22.966179 20521 net.c ...
- caffe: test code 执行出问题: Check failed: FLAGS_weights.size() > 0 (0 vs. 0) Need model weights to score.
Check failed: FLAGS_weights.size() > 0 (0 vs. 0) Need model weights to score. 出现这个错误,但是我记得昨天还好好的, ...
- SSRS 通过Customer Code访问Dataset
A dataset in Reporting Services is not the same type of object as an ADO.Net dataset. A report data ...
- 使用caffe训练自己的CNN
现在有这样的一个场景:给一张行人的小矩形框图片, 根据该行人的特征识别出性别. 分析: (1),行人的姿态各异,变化多端.很难提取图像的特定特征 (2),正常人肉眼判别行人的根据是身材比例,头发长度等 ...
- 学习笔记之 初试Caffe,Matlab接口提取feature
Caffe 提供了matlab接口,可以用于提取图像的feature.
- 机器学习caffe环境搭建——redhat7.1和caffe的python接口编译
相信看这篇文章的都知道caffe是干嘛的了,无非就是深度学习.神经网络.计算机视觉.人工智能这些,这个我就不多介绍了,下面说说我的安装过程即遇到的问题,当然还有解决方法. 说下我的环境:1>虚拟 ...
- {Reship}{Code}{CV}
UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下: https://netfiles.uiuc.edu/jbhuang1/www/resources/vision/in ...
- Client Dataset Basics
文章出处: http://www.informit.com/articles/article.aspx?p=24094 In the preceding two chapters, I discus ...
随机推荐
- Struts2 和 spring mvc的 迭代标签常用属性对比
<s:iterator value="#users" var="u" status="st"> <c:forEach i ...
- C++11的new concepts (move semantic)
MoveConstructible 和MoveAssignable MoveConstructible Specifies that an instance of the type can be mo ...
- WPF Step By Step 控件介绍
WPF Step By Step 控件介绍 回顾 上一篇,我们主要讨论了WPF的几个重点的基本知识的介绍,本篇,我们将会简单的介绍几个基本控件的简单用法,本文会举几个项目中的具体的例子,结合这些 例子 ...
- SQL 存储过程中in
存储过程中用in,如果将条件(1,2,3)这样的集合当成参数传进来的话是不能执行的,因为集合转成一个变量是出错 解决办法拼接SQL字符串传进来,后者在存过中拼接字符串都可以如: ALTER PROCE ...
- 中文圣经 for Android
中文圣经(For Android) 目前,中文圣经App包含了如下圣经版本: 和合本 现代中文译本 吕振中译本 中文新译本 英文标准本(ESV) King James Version(KJV) New ...
- C# subString的理解
public void TestMethod1() { string str = "ABCDEFGHIJKLMN"; string result ...
- SecureCRT rz和sz命令不可用,安装lrzsz
1.从网站下载 lrzsz-x.xx.xx.tar.gz2.解压文件[root@localhost src]# tar zxvf lrzsz-0.12.20.tar.gz3.安装[root@local ...
- Python 如何跳出多重循环
Python 如何跳出多重循环 抛异常 return
- QQ截图取色方法
转自:http://www.oicqzone.com/qqjiqiao/2014110920194.html ctrl+alt+a截图的时候,会显示RGB值.是的,你也许会想,但是我要的是#RRGGB ...
- Qt之qSetMessagePattern
简述 改变默认的消息处理输出. 允许改变qDebug().qWarning().qCritical().qFatal()的输出. 简述 占位符 示例 qSetMessagePattern QT_MES ...