排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法 对算法本身的速度要求很高。 而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面将给出详细的说明。《计算机程序设计技巧》(第三卷,排序和查找)
     对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。 我将按照算法的复杂度,从简单到难来分析算法。第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有使用word,所以无法打出上标和下标)。第二部分是高级排序算法,复杂度为O(Log2(N))。这里我们只介绍一种算法。另外还有几种 算法因为涉及树与堆的概念,所以这里不于讨论。第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较奇特,值得参考(编程的角度)。同时也可以让我们从另外的角度来认识这个问题。现在,让我们开始吧:
一、简单排序算法
由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境
下运行通过。因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么
问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。
1.冒泡法:(从后向前倒)
这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡:
#include <iostream.h>
void BubbleSort(int* pData,int Count)
{
int iTemp;
for(int i=1;i<Count;i++)
        {
          for(int j=Count-1;j>=i;j--)
                 {
                   if(pData[j]<pData[j-1])
                             {
                               iTemp = pData[j-1];
                               pData[j-1] = pData[j];
                               pData[j] = iTemp;
                             }
                 }
        }
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
BubbleSort(data,7);
for (int i=0;i<7;i++)
             cout<<data[i]<<" ";
cout<<"\n";
}

倒序(最糟情况)
第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次
其他:
第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次)
第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换,显然,次数越多,性能就越差。从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。 写成公式就是1/2*(n-1)*n。现在注意,我们给出O方法的定义:
若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没 学好数学呀,对于编程数学是非常重要的!!!)

现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2* (n-1)*n<=1/2*n*n=K*g(n)。所以f(n) =O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)。再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换),复杂度为O(n*n)。当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的原因,我们通常都是通过循环次数来对比算法。
2.交换法:
    交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。
#include <iostream.h>
void ExchangeSort(int* pData,int Count)
{
int iTemp;
for(int i=0;i<Count-1;i++)
           {
             for(int j=i+1;j<Count;j++)
                      {
                        if(pData[j]<pData[i])
                                  {
                                    iTemp = pData[i];
                                    pData[i] = pData[j];
                                    pData[j] = iTemp;
                                  }
                      }
          }
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
ExchangeSort(data,7);
for (int i=0;i<7;i++)
               cout<<data[i]<<" ";
cout<<"\n";
}
倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次

其他:
第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)
第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次

从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样也是1/2* (n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。

3.选择法::(从第一个开始和后面的最大的进行比较)
现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下) 这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中 选择最小的与第二个交换,这样往复下去。

#include <iostream.h>
void SelectSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=0;i<Count-1;i++)
             {
               iTemp = pData[i];
               iPos = i;
               for(int j=i+1;j<Count;j++)
                            {
                              if(pData[j]<iTemp)
                                         {
                                           iTemp = pData[j];
                                           iPos = j;
                                          }
                            }
               pData[iPos] = pData[i];
               pData[i] = iTemp;
              }
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
SelectSort(data,7);
for (int i=0;i<7;i++)
             cout<<data[i]<<" ";
cout<<"\n";
}

倒序(最糟情况)
第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7-& gt;(iTemp=7)7,9,8,10(交换1次)
第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次)
第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次)
循环次数:6次
交换次数:2次

其他:
第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9-& gt;(iTemp=7)7,10,8,9(交换1次)
第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次)
第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n 所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。

4.插入法:
插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张

#include <iostream.h>
void InsertSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=1;i<Count;i++)
              {
               iTemp = pData[i];
               iPos = i-1;
               while((iPos>=0) && (iTemp<pData[iPos]))
                               {
                                 pData[iPos+1] = pData[iPos];
                                 iPos--;
                               }
               pData[iPos+1] = iTemp;
             }
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
InsertSort(data,7);
for (int i=0;i<7;i++)
             cout<<data[i]<<" ";
cout<<"\n";
}

倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次)
第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次)
第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次)
循环次数:6次
交换次数:3次

其他:
第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次)
第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次)
循环次数:4次
交换次数:2次

上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是,因为其循环次数虽然并不固定,我们仍可以使用O方法。从上面的结果可以看出,循环的次数f(n)<= 1/2*n*(n-1)<=1/2*n*n。所以其复杂度仍为O(n*n)(这里说明一下,其实如果不是为了展示这些简单排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是O(n)(推导类似选择法),但我们每次要进行与内层循环相同次数的‘=’操作。正常的一次交换我们需要三次‘=’ 而这里显然多了一些,所以我们浪费了时间。

最终,我个人认为,在简单排序算法中,选择法是最好的。

二、高级排序算法:
高级排序算法中我们将只介绍这一种,同时也是目前我所知道(我看过的资料中)的最快的。它的工作看起来仍然象一个二叉树。首先我们选择一个中间值 middle程序中我们使用数组中间值,然后把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使 用这个过程(最容易的方法——递归)。
1.快速排序:(二分法)

#include <iostream.h>
void run(int* pData,int left,int right)
{
int i,j;
int middle,iTemp;
i = left;
j = right;
middle = pData[(left+right)/2]; //求中间值
   do{
         while((pData[i]<middle) && (i<right))//从左扫描大于中值的数
                        i++;
         while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
                        j--;
         if(i<=j)//找到了一对值
                       {
                        //交换
                         iTemp = pData[i];
                         pData[i] = pData[j];
                         pData[j] = iTemp;
                         i++;
                         j--;
                       }
}while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)

//当左边部分有值(left<j),递归左半边
if(left<j)
           run(pData,left,j);
//当右边部分有值(right>i),递归右半边
if(right>i)
           run(pData,i,right);
}
void QuickSort(int* pData,int Count)
{
run(pData,0,Count-1);
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
QuickSort(data,7);
for (int i=0;i<7;i++)
            cout<<data[i]<<" ";
cout<<"\n";
}

这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况
1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以算法复杂度为O(log2(n)*n)
其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢 于快速排序(因为要重组堆)。

c排序算法大全的更多相关文章

  1. C# 经典排序算法大全

    C# 经典排序算法大全 选择排序 using System; using System.Collections.Generic; using System.Linq; using System.Tex ...

  2. C#字符串数组排序 C#排序算法大全 C#字符串比较方法 一个.NET通用JSON解析/构建类的实现(c#) C#处理Json文件 asp.net使用Jquery+iframe传值问题

    C#字符串数组排序   //排序只带字符的数组,不带数字的 private   string[]   aa   ={ "a ", "c ", "b & ...

  3. 算法大全(c,c++)

    http://www.2cto.com/kf/201109/105758.html 算法大全(C,C++)一. 数论算法 1.求两数的最大公约数function gcd(a,b:integer):in ...

  4. 目前所有的ANN神经网络算法大全

    http://blog.sina.com.cn/s/blog_98238f850102w7ik.html 目前所有的ANN神经网络算法大全 (2016-01-20 10:34:17) 转载▼ 标签: ...

  5. JavaScript实现常用的排序算法

    ▓▓▓▓▓▓ 大致介绍 由于最近要考试复习,所以学习js的时间少了 -_-||,考试完还会继续的努力学习,这次用原生的JavaScript实现以前学习的常用的排序算法,有冒泡排序.快速排序.直接插入排 ...

  6. 排序算法----基数排序(RadixSort(L))单链表智能版本

    转载http://blog.csdn.net/Shayabean_/article/details/44885917博客 先说说基数排序的思想: 基数排序是非比较型的排序算法,其原理是将整数按位数切割 ...

  7. 常见排序算法(附java代码)

    常见排序算法与java实现 一.选择排序(SelectSort) 基本原理:对于给定的一组记录,经过第一轮比较后得到最小的记录,然后将该记录与第一个记录的位置进行交换:接着对不包括第一个记录以外的其他 ...

  8. 几大排序算法的Java实现

    很多的面试题都问到了排序算法,中间的算法和思想比较重要,这边我选择了5种常用排序算法并用Java进行了实现.自己写一个模板已防以后面试用到.大家可以看过算法之后,自己去实现一下. 1.冒泡排序:大数向 ...

  9. 排序算法----基数排序(RadixSort(L,max))单链表版本

    转载http://blog.csdn.net/Shayabean_/article/details/44885917博客 先说说基数排序的思想: 基数排序是非比较型的排序算法,其原理是将整数按位数切割 ...

随机推荐

  1. 李洪强iOS开发之断点续传1

    未完待续.. // //  ViewController.m //  A18 - duo wen jian shang chuan // //  Created by 李洪强 on 16/6/29. ...

  2. haproxy重启

    ps -aux | grep haproxy.cfg sudo kill -9 pidsudo /data/tools/haproxy/sbin/haproxy -f /data/tools/hapr ...

  3. CentOS系统中常用查看日志命令

    cat tail -f 日 志 文 件 说    明 /var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一 /var/log/secure 与安 ...

  4. Java:基本数据类型包装类

    基本数据类型对象包装类    基本数据类型(关键字)   引用数据类型(类)          byte                          Byte          short   ...

  5. RHEL7-使用Apache服务部署静态网站

    1. 安装Apache服务程序 1.1 在虚拟机中选中光盘镜像,并设置连接 1.2 将光盘设备挂载到/media/cdrom目录 [root@localhost ~]# mkdir -p /media ...

  6. Python ->> 第一个Python程序

    #coding:utf-8 #print 'input your name, please' #name = raw_input('请输入你的名字:'.decode('utf-8').encode(' ...

  7. linux c 生成uuid

    /********方法一**********/#include <stdio.h> #include <stdlib.h> #include <string.h> ...

  8. Windows,OS X 屏幕录制gif的工具

    gif比png,jpg具有更好的展示效果.github上的很多项目就用gif. 一个比较好的工具是 : http://cockos.com/licecap/    但是目前不支持linux.

  9. 加密解密(7)*PKI基础知识(完整)

    PKI 基础知识 摘要 本白皮书介绍了加密和公钥基本结构(PKI)的概念和使用 Microsoft Windows 2000 Server 操作系统中的证书服务的基础知识.如果您还不熟悉加密和公钥技术 ...

  10. c#换ip代理源码

    很多朋友都想如何提高自己的网站流量,可是都没有什么好的办法 经过很长时间的研究,在C#中实现了,当然了,这部分代码其中一部分是网上的,不是原创. using System; using System. ...