[再寄小读者之数学篇](2014-11-24 Abel 定理)
设幂级数 $\dps{g(x)=\sum_{n=0}^\infty a_nx^n}$ 在 $|x|<1$ 内收敛, 且 $\dps{\sum_{n=0}^\infty a_n=s}$ 收敛. 则 $$\bex \lim_{x\to 1^-} g(x)=s. \eex$$
证明: 记 $s_n=a_0+\cdots +a_n$, 则 $\dps{\vlm{n}s_n=s}$. 写出 $$\beex \bea \sum_{k=0}^n a_kx^k &=a_0+\sum_{k=1}^n (s_k-s_{k-1})x^k\\ &=a_0+\sum_{k=1}^n s_kx^k-\sum_{k=0}^{n-1}s_kx^{k+1}\\ &=a_0+\sum_{k=1}^{n-1} s_kx^k(1-x) +s_nx^n-s_0x\\ &=s_0(1-x)+\sum_{k=1}^{n-1} s_kx^k(1-x) +s_nx^n\\ &=\sum_{k=0}^{n-1} s_kx^k(1-x) +s_nx^n\quad\sex{|x|<1}. \eea \eeex$$ 令 $n\to\infty$ 有 $$\bex g(x)=\sum_{k=0}^\infty s_kx^k(1-x), \eex$$ 又 $\dps{\vlm{n}s_n=s}$, $$\bex \forall\ \ve>0,\ \exists\ N,\st k>N\ra |s_k-s|<\ve. \eex$$ 而 $$\beex \bea |g(x)-s| &=\sev{(1-x)\sum_{k=0}^\infty (s_k-s)x^k}\\ &\leq (1-x) \sum_{k=0}^N |s_k-s|\cdot |x|^k +\sum_{k=N+1}^\infty|s_k-s|\cdot |x|^k\\ &\leq (1-x) \sum_{k=0}^N |s_k-s|+\ve. \eea \eeex$$ 令 $x\to 1^-$ 有 $$\bex \lim_{x\to 1^-}|g(x)-s|\leq \ve. \eex$$ 由 $\ve$ 的任意性即知 $$\bex \lim_{x\to 1^-}|g(x)-s|=0. \eex$$
[再寄小读者之数学篇](2014-11-24 Abel 定理)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- C++函数默认参数
C++中允许为函数提供默认参数,又名缺省参数. 使用默认参数时的注意事项: ① 有函数声明(原型)时,默认参数可以放在函数声明或者定义中,但只能放在二者之一 double sqrt(double f ...
- iOS开发--UITableView
-.建立 UITableView DataTable = [[UITableView alloc] initWithFrame:CGRectMake(0, 0, 320, 420)]; [Data ...
- 【Spring开发】—— Spring Core
原文:[Spring开发]-- Spring Core 前言 最近由于一些工作的需要,还有自己知识的匮乏再次翻开spring.正好整理了一下相关的知识,弥补了之前对spring的一些错误认知.这一次学 ...
- 【重走Android之路】【Java面向对象基础(一)】数据类型与运算符
[重走Android之路][基础篇(一)][Java面向对象基础]数据类型与运算符 1.数据类型介绍 在Java中,数据类型分为两种:基本数据类型和引用类型. 基本数据类型共8种,见下表: 基本数 ...
- oracle服务、客户端 plsql配置
1.oracle服务端安装 Oracle 9i 的安装(图解) 2.oracle客户端安装 http://wenku.baidu.com/view/8be28581f524ccbff0218427.h ...
- 【USACO】
Among the large Wisconsin cattle ranchers, it is customary to brand cows with serial numbers to plea ...
- js判断页面放大缩小
项目中,经常会碰到页面被放大或者缩小,导致页面显示错误,js可以判断页面放大缩小. // 若返回100则为默认无缩放,如果大于100则是放大,否则缩小 function detectZoom (){ ...
- shell进行mysql统计
array=(江苏 浙江 新疆 宁夏 广东 福建 重庆 江西 吉林 湖南 山东 云南 上海 河北 黑龙江 北京 四川 河南 山西 湖北 辽宁 安徽 陕西 广西 贵州 内蒙古 天津 甘肃 海南 青海 ...
- [ionic开源项目教程] - 第2讲 新建项目,配置app.js和controllers.js搭建基础视图
新建项目 由项目功能架构图选择合适的页面架构,这里选用Tab,ionic新建项目,默认的模板就是tab. $ ionic start TongeNews Creating Ionic app in f ...
- HDU 2062 Subset sequence
我是把它当做一道数学题来做的. 这篇题解写的有点啰嗦,但是是我最原始的思维过程. 对于一个集合An= { 1, 2, …, n },在n比较小的情况下,在纸上按字典顺序把所有子集排列一下. 以n=3, ...