[再寄小读者之数学篇](2014-11-24 Abel 定理)
设幂级数 $\dps{g(x)=\sum_{n=0}^\infty a_nx^n}$ 在 $|x|<1$ 内收敛, 且 $\dps{\sum_{n=0}^\infty a_n=s}$ 收敛. 则 $$\bex \lim_{x\to 1^-} g(x)=s. \eex$$
证明: 记 $s_n=a_0+\cdots +a_n$, 则 $\dps{\vlm{n}s_n=s}$. 写出 $$\beex \bea \sum_{k=0}^n a_kx^k &=a_0+\sum_{k=1}^n (s_k-s_{k-1})x^k\\ &=a_0+\sum_{k=1}^n s_kx^k-\sum_{k=0}^{n-1}s_kx^{k+1}\\ &=a_0+\sum_{k=1}^{n-1} s_kx^k(1-x) +s_nx^n-s_0x\\ &=s_0(1-x)+\sum_{k=1}^{n-1} s_kx^k(1-x) +s_nx^n\\ &=\sum_{k=0}^{n-1} s_kx^k(1-x) +s_nx^n\quad\sex{|x|<1}. \eea \eeex$$ 令 $n\to\infty$ 有 $$\bex g(x)=\sum_{k=0}^\infty s_kx^k(1-x), \eex$$ 又 $\dps{\vlm{n}s_n=s}$, $$\bex \forall\ \ve>0,\ \exists\ N,\st k>N\ra |s_k-s|<\ve. \eex$$ 而 $$\beex \bea |g(x)-s| &=\sev{(1-x)\sum_{k=0}^\infty (s_k-s)x^k}\\ &\leq (1-x) \sum_{k=0}^N |s_k-s|\cdot |x|^k +\sum_{k=N+1}^\infty|s_k-s|\cdot |x|^k\\ &\leq (1-x) \sum_{k=0}^N |s_k-s|+\ve. \eea \eeex$$ 令 $x\to 1^-$ 有 $$\bex \lim_{x\to 1^-}|g(x)-s|\leq \ve. \eex$$ 由 $\ve$ 的任意性即知 $$\bex \lim_{x\to 1^-}|g(x)-s|=0. \eex$$
[再寄小读者之数学篇](2014-11-24 Abel 定理)的更多相关文章
- [再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]反对称矩阵的组合) 设 ${\bf A},{\bf B}$ 都是反对称矩阵, 且 ${\b ...
- [再寄小读者之数学篇](2014-06-22 求导数 [中国科学技术大学2014年高等数学B考研试题])
设 $f(x)=x^2\ln(x+1)$, 求 $f^{(n)}(0)$. 解答: 利用 Leibniz 公式易知 $f'(0)=f''(0)=0$, $f^{(n)}(0)=(-1)^{n-3} n ...
- [再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)
$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{ ...
- [再寄小读者之数学篇](2014-06-26 Besov space estimates)
(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &a ...
- [再寄小读者之数学篇](2014-06-23 Bernstein's inequality)
$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq ...
- [再寄小读者之数学篇](2014-06-21 Beal-Kaot-Majda type logarithmic Sobolev inequality)
For $f\in H^s(\bbR^3)$ with $s>\cfrac{3}{2}$, we have $$\bex \sen{f}_{L^\infty}\leq C\sex{1+\sen{ ...
- [再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)
设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac ...
- [再寄小读者之数学篇](2014-04-08 from 1297503521@qq.com $\sin x-x\cos x=0$ 的根的估计)
(2014-04-08 from 1297503521@qq.com) 设方程 $\sin x-x\cos x=0$ 在 $(0,+\infty)$ 中的第 $n$ 个解为 $x_n$. 证明: $$ ...
- [再寄小读者之数学篇](2014-12-04 $\left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0.$)
试证: $$\bex \left(1+\frac{1}{x}\right)^x>\frac{2ex}{2x+1},\forall\ x>0. \eex$$ 证明 (from Hanssch ...
- [再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
随机推荐
- 浅析ODS与EDW关系(转载)
浅析ODS与EDW 关系 刘智琼 (中国电信集团广州研究院广州510630) 摘要 本文重点介绍了企业运营数据仓储(ODS)和企业数据仓库(EDW )的概念,并对ODS与EDW 之间的关系,包括两者相 ...
- 【Spring开发】—— Spring Core
原文:[Spring开发]-- Spring Core 前言 最近由于一些工作的需要,还有自己知识的匮乏再次翻开spring.正好整理了一下相关的知识,弥补了之前对spring的一些错误认知.这一次学 ...
- MyBatis学习总结_12_Mybatis+Mysql分页查询
package cn.tsjinrong.fastfile.util; /** * @ClassName: Page * @Description: TODO(分页组件的父类,用来封装分页的 通用内容 ...
- Netty4.x中文教程系列(三) Hello World !详解
Netty 中文教程 (二) Hello World !详解 上一篇文章,笔者提供了一个Hello World 的Netty示例. 时间过去了这么久,准备解释一下示例代码. 1.HelloServer ...
- c# 串行【序列化】和解串【反序列化】
C# 串行[序列化]和解串[反序列化] 一. 什么是序列化和反序列话呢? 相信我们做程序的都会遇到这种情况,需要将C#中某一个结构很复杂的类的对象存储起来,或者通过网路传输到远程的客户端程序中去, ...
- php 传址
在php 中引用的意思是:不同的名字访问同一个变量内容. 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 例一: <?php $a="2010"; $b =&am ...
- HDU4675【GCD of scequence】【组合数学、费马小定理、取模】
看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...
- EasyUi datagrid 表格分页例子
1.首先引入 easyui的 css 和 js 文件 2.前台 需要写的js //源数据 function Async(action,args,callback){ $.ajax({ url: a ...
- C#中的文件同步
How to: Synchronize Files by Using Managed Code FileSyncProvider Class File Synchronization Provider ...
- 【转】Android Gson的使用
Android Gson 2014 年 05 月 22 日 android 目前的客户端大都有和服务端进行交互,而数据的格式基本就是json了,于是在Android开发中就经常用到json解析,方便的 ...