最近由于项目需要在研究spark相关的内容,形成了一些技术性文档,发布这记录下,懒得翻译了。

There are some spaces the official documents didn't explain very clearly, especially on some details. Here are given some more explanations base on the practices  I did  and the source codes I read these days.

(The official document link is http://spark.apache.org/docs/latest/job-scheduling.html)

  1. There are two different schedulers in current spark implementation, FIFO is the default setting and the initial way that spark implement.
  2. Both FIFO and FAIR schedulers can support the basic functionality that multiple parallel jobs run simultaneously, the prerequisite is that they are submitted from separate threads. (i.e., in single thread, the jobs are executed in order)
  3. In FIFO Scheduler, the jobs which are submitted earlier has higher priority and possibility than those later jobs. But it doesn't mean that the first job will execute first, it is also possible that later jobs run before the earlier ones if the resources of the whole cluster are not occupied. However,  the FIFO scheduler will cause the worst case: if the first jobs are large, the later jobs maybe suffer significant delay.
  4. The FAIR Scheduler is the way corresponding to Hadoop FAIR scheduler and enhancement for FIFO. In FIFO fashion, there is only one factor Priority will be considered in SchedulableQueue; While in FAIR fashion, more factors will be considered including minshare, runningtasks, weight (You can reference the code below if interest).Similarly, the jobs don't always run by following the rules by FairSchedulingAlgorithm strictly, while as a whole, the FAIR scheduler really alleviate largely the delay time for small jobs by adjusting the parameters which were delayed significantly in FIFO fashion in my observation through the concurrent JMeter tests。

private[spark] class FIFOSchedulingAlgorithm extends SchedulingAlgorithm {
override def comparator(s1: Schedulable, s2: Schedulable): Boolean = {
val priority1 = s1.priority
val priority2 = s2.priority
var res = math.signum(priority1 - priority2)
if (res == 0) {
val stageId1 = s1.stageId
val stageId2 = s2.stageId
res = math.signum(stageId1 - stageId2)
}
if (res < 0) {
true
} else {
false
}
}
}
private[spark] class FairSchedulingAlgorithm extends SchedulingAlgorithm {
override def comparator(s1: Schedulable, s2: Schedulable): Boolean = {
val minShare1 = s1.minShare
val minShare2 = s2.minShare
val runningTasks1 = s1.runningTasks
val runningTasks2 = s2.runningTasks
val s1Needy = runningTasks1 < minShare1
val s2Needy = runningTasks2 < minShare2
val minShareRatio1 = runningTasks1.toDouble / math.max(minShare1, 1.0).toDouble
val minShareRatio2 = runningTasks2.toDouble / math.max(minShare2, 1.0).toDouble
val taskToWeightRatio1 = runningTasks1.toDouble / s1.weight.toDouble
val taskToWeightRatio2 = runningTasks2.toDouble / s2.weight.toDouble
var compare: Int = 0 if (s1Needy && !s2Needy) {
return true
} else if (!s1Needy && s2Needy) {
return false
} else if (s1Needy && s2Needy) {
compare = minShareRatio1.compareTo(minShareRatio2)
} else {
compare = taskToWeightRatio1.compareTo(taskToWeightRatio2)
} if (compare < 0) {
true
} else if (compare > 0) {
false
} else {
s1.name < s2.name
}
}
 

  5.The pools in FIFO and FAIR schedulers

Spark Job Scheduling的更多相关文章

  1. Spark记录-官网学习配置篇(一)

    参考http://spark.apache.org/docs/latest/configuration.html Spark提供三个位置来配置系统: Spark属性控制大多数应用程序参数,可以使用Sp ...

  2. spark总结——转载

    转载自:    spark总结 第一个Spark程序 /** * 功能:用spark实现的单词计数程序 * 环境:spark 1.6.1, scala 2.10.4 */ // 导入相关类库impor ...

  3. Spark调研笔记第3篇 - Spark集群相应用的调度策略简单介绍

    Spark集群的调度分应用间调度和应用内调度两种情况,下文分别进行说明. 1. 应用间调度 1) 调度策略1: 资源静态分区 资源静态分区是指整个集群的资源被预先划分为多个partitions,资源分 ...

  4. 论文阅读计划1(Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming & An Enforcement of Real Time Scheduling in Spark Streaming & StyleBank: An Explicit Representation for Neural Ima)

    Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming[1] 简介:雅虎发布的一份各种流处理引擎的基准 ...

  5. [Spark] Spark 3.0 Accelerator Aware Scheduling - GPU

    Ref: Spark3.0 preview预览版尝试GPU调用(本地模式不支持GPU) 预览版本:https://archive.apache.org/dist/spark/spark-3.0.0-p ...

  6. spark 笔记 14: spark中的delay scheduling实现

    延迟调度算法的实现是在TaskSetManager类中的,它通过将task存放在四个不同级别的hash表里,当有可用的资源时,resourceOffer函数的参数之一(maxLocality)就是这些 ...

  7. spark 笔记 3:Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling

    spark论文中说他使用了延迟调度算法,源于这篇论文:http://people.csail.mit.edu/matei/papers/2010/eurosys_delay_scheduling.pd ...

  8. Spark分析之Job Scheduling Process

    经过前面文章的SparkContext.DAGScheduler.TaskScheduler分析,再从总体上了解Spark Job的调度流程 1.SparkContext将job的RDD DAG图提交 ...

  9. Spark踩坑记——Spark Streaming+Kafka

    [TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark strea ...

随机推荐

  1. angularjs webstorm 单元测试 Package.json

    Package.json小结 生成package.json 定位到想放置package.json的目录,运行npm init,根据提示就可以生成package.json文件,其中test comman ...

  2. android学习笔记35——AnimationDrawable资源

    AnimationDrawable资源 AnimationDrawable,代表一个动画. android既支持传统的逐帧动画(类似于电影方式,一张图片一张图片的切换),也支持通过平移.变换计算出来的 ...

  3. [vim]VIM快捷键整理

    转自:http://blog.csdn.net/ceven2010/article/details/7406341#comments 一.移动光标 1.左移h.右移l.下移j.上移k 2.向下翻页ct ...

  4. C# 通过线程来控制进度条(转)--讲解多线程对界面的操作

    // 通过创建委托解决传递参数问题 private void _btnRun_Click( object sender, System.EventArgs e ) { RunTaskDelegate ...

  5. PLSQL_PLSQL读和写CSV文件方式(案例)

    2012-01-06 Created By BaoXinjin

  6. Educational Codeforces Round 15 Powers of Two

    Powers of Two 题意: 让求ai+aj=2的x次幂的数有几对,且i < j. 题解: 首先要知道,排完序对答案是没有影响的,比如样例7 1一对,和1 7一对是样的,所以就可以排序之后 ...

  7. hdu 5363 组合数学 快速幂

    Time Limit: 2000/1000 MS (Java/Others)   Memory Limit: 131072/131072 K (Java/Others) Problem Descrip ...

  8. JQuery之DataTables强大的表格解决方案

    1.DataTables的默认配置 $(document).ready(function() { $('#example').dataTable(); } ); 示例:http://www.guoxk ...

  9. MySql中的变量定义

    根据mysql手册,mysql的变量分为两种:系统变量和用户变量.但是在实际使用中,还会遇到诸如局部变量.会话变量等概念.根据个人感觉,mysql变量大体可以分为四种类型: 一.局部变量. 局部变量一 ...

  10. (转)关于rdlc报表的数据源

      rdlc 报表字符类数据分为文本数据和表数据,区别就在于文本数据只有一个,表数据可以有多行,然而有很多数据只需要一个传入就可以比如打印某个用户的基本信息,很多信息都是唯一的,如果此时报表传入的数据 ...