Before working as an applications engineer, I worked as an IC test development engineer here at TI. One of my projects was to characterize an I2C temperature sensor. After writing some software, I threw together a hand-wired prototype board. I was in a hurry, so I left off that pesky decoupling capacitor. Who needs it, right?

I collected data for about a week, and none of my results matched expectations. I made numerous changes in an attempt to improve performance, but nothing worked. Finally, I decided to add the decoupling capacitor. As you might expect, this solved the issue.

This got me thinking…do we always need decoupling capacitors? What do they really do?

One way to answer the question is to show what happens when you don’t use proper decoupling.

Figure 1 shows a buffer circuit driving an R-C load with and without decoupling capacitors (C1 and C2). Notice that the output signal has a high frequency (3.8MHz) oscillation for the circuit without decoupling. Poor stability, poor transient response, start-up problems, and other anomalies are common challenges with amplifiers that do not have decoupling capacitors.

Figure 1:  Buffer with and without decoupling (measured results)

Figure 2 illustrates why decoupling is important. Note that the inductance of the power supply trace will limit the transient current.

The decoupling capacitor is very close to the device, so it has a very low inductance path for current flow. During transients, the capacitor can supply very large amounts of current to the device for a very short duration.

The device without decoupling does not have a mechanism to provide the transient currents, so the amplifier’s internal nodes will droop – often referred to as a glitch. The internal power supply glitches on the device without decoupling cause inconsistent operation, because the internal nodes are not properly biased.

Figure 2:  Current flow with and without decoupling

In addition to using a decoupling capacitor, you should also use a short low impedance connection between the decoupling capacitor, the power supply, and the ground connection.

Figure 3 compares a good decoupling layout to a bad one. You should always try to keep the decoupling connections short and avoid vias in the decoupling path, because vias add inductance. Most data sheets recommend a decoupling capacitor value. If no recommendation is given, use 0.1uF.

Figure 3:  Good vs. bad PCB layout

Using a properly connected decoupling capacitor can save you a lot of trouble. Even if your circuit works on the bench without decoupling, it could have issues when you go into production from process variation and other real world influences.

Learn from my mistake; don’t fall into the no-decoupling trap!

A special thanks to my colleagues Ichiro Itoi and Tim Green for your insights into decoupling and real-world measured results.

【转】The decoupling capacitor…is it really necessary?的更多相关文章

  1. RFID 仿真/模拟/监控/拦截/检测/嗅探器

    Sound card based RFID sniffer/emulator (Too tired after recon.cx to do draw the schematics better th ...

  2. RFID 读写器 Reader Writer Cloner

    RFID读写器的工作原理 RFID的数据采集以读写器为主导,RFID读写器是一种通过无线通信,实现对标签识别和内存数据的读出和写入操作的装置. 读写器又称为阅读器或读头(Reader).查询器(Int ...

  3. Multi-voltage和power gating的实现

    power domain:一个逻辑的集合体,包含power supply的一些信息.建立在FE. voltage area:chip上的一块物理区域.可以看作power domain的物理实现. Le ...

  4. 旁路、去耦、Bulk以及耦合电容的作用与区别

    在硬件设计中有很多种电容,各种电容的功能.种类和电容容值各不相同.按照功能划分的话,最重要的几种电容分别称为:去耦电容(De-coupling Capacitor),旁路电容(Bypass Capac ...

  5. Make a printer-port EEPROM programmer and dongle

    You can easily use a PC's printer port for serial-EEPROM programming. You can use a device-programme ...

  6. STM32 Hardware Development

    http://www.st.com/web/en/resource/technical/document/application_note/CD00164185.pdf AN2586 http://w ...

  7. 2018.11.16 RX- IC

    1. IC内部组成: Reference Oscillator:基准参考晶振-后续会放大32 倍 Comparator:比较器,输出RF信号 control logic:控制晶振倍频,控制LF,pow ...

  8. 旁路电容的PCB布局布线透彻详解(4)

    原文地址点击这里: 前面使用了较多的篇幅介绍旁路电容的工作原理及其选择依据,我们已经能够为电路系统中相应的数字集成芯片选择合适的旁路电容,在实际应用过程中,旁路电容的PCB布局布线也会影响到高频噪声旁 ...

  9. Capacitor电容

    capacitor无正负极性. cap electrolit有极性,实际中不能接反,否则电容会烧毁或爆炸. MULTISIM仿真中接反会有漏阻存在,但不会烧毁. 电容的分类 按结构可分为:固定电容,可 ...

随机推荐

  1. MFC 进度条控件

    1.进度条 主要用来进行数据读写.文件拷贝和磁盘格式等操作时的工作进度提示情况,如安装程序等,伴随工作进度的进展,进度条的矩形区域从左到右利用当前活动窗口标题条的颜色来不断填充. 2.进度条控制在MF ...

  2. OpenStack fuel-web不可用解决办法

    Contents [hide] 1 为增加一台计算节点 2 磁盘清空 3 启动占用8001端口的进程 4 启动占用5432端口的进程 为增加一台计算节点 打开fuel-web,发现无法打开,弹出ngi ...

  3. python爬虫框架scrapy实例详解

    生成项目scrapy提供一个工具来生成项目,生成的项目中预置了一些文件,用户需要在这些文件中添加自己的代码.打开命令行,执行:scrapy st... 生成项目 scrapy提供一个工具来生成项目,生 ...

  4. TM1680的I2C的51例程

    搞到一个例程,虽然是51的, 但是我的ST版本也是用的模拟I2C, 分析一下吧: unsigned char i=0;TM1680start();  //I2C起始信号 TM1680SendByte( ...

  5. javaWeb 使用cookie显示上次访问网站时间

    package de.bvb.cookie; import java.io.IOException; import java.io.PrintWriter; import java.util.Date ...

  6. HDU 3746:Cyclic Nacklace

    Cyclic Nacklace Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. Spring框架bean的配置(3):基于注解的配置

    1.基于注解的配置: @Component: 基本注解, 标识了一个受 Spring 管理的组件 @Respository: 标识持久层组件 @Service: 标识服务层(业务层)组件 @Contr ...

  8. Robberies(简单的01背包 HDU2955)

    Robberies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  9. Communication System(dp)

    Communication System Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25006 Accepted: 8925 ...

  10. office软件

    32位系统office2013: http://pan.baidu.com/s/1bnCqMZ1 64位系统office2013: http://pan.baidu.com/s/1i33rdHF vi ...