题目链接:传送门

思路:

考虑每一列有2种颜色,总共有n行,每一行的第一个格确定颜色,由于左右颜色不相同,后面的行就确定了。

所以总共有2^n中结果。

由于n太大,所以要用到费马小定理a^n%mod=a^(n%(mod-1))%mod,所以先求出a的指数,然后用快速幂求解就好了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
typedef long long LL;
const LL MOD = 1e9+;
const int maxn = ;
char str1[maxn],str2[maxn];
int main(void)
{
int i,j;
LL ans=,n,res=,tp=;
scanf("%s%s",str1,str2);
n=strlen(str1);
for(i=;i<n;i++) ans=(ans*+str1[i]-'')%(MOD-);
n=ans;
while(n){
if(n&) res=res*tp%MOD;
tp=tp*tp%MOD;
n>>=;
}
printf("%lld\n",res);
return ;
}

牛客训练四:Applese 涂颜色(费马小定理+快速幂)的更多相关文章

  1. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  2. hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)

    题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) ...

  3. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  4. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  5. hdu_4869(费马小定理+快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4869 Turn the pokers Time Limit: 2000/1000 MS (Java/O ...

  6. hdu4549(费马小定理 + 快速幂)

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n ...

  7. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  8. hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. 【费马小定理+快速幂取模】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies

    G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the pro ...

随机推荐

  1. RSA加密原理使用方式签名验证

      RSA加密原理使用方式签名验证 加密是网络传输中非常重要的一环,它保证了信息的安全性,让他人无法通过抓包来获取通讯的信息也无法通过伪造信息而实现对系统的入侵.其中最为常用的信息传递加密方式就是RS ...

  2. 【 python】输出随机的字符或数字

    随机输出0-9的数字 from random import choice x = choice([0,1,2,3,4,5,6,7,8,9]) print x 输出结果 #python first.py ...

  3. Sobel Derivatives

    https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html ...

  4. migrantion

    Enable-Migrations - ConfigurationTypeName namespace.DbContext Enable-Migrations命令创建了一个新的Migrations文件 ...

  5. u-boot之怎么实现分区

    启动参数bootcmd=nand read.jffs2 0x30007FC0 kernel; bootm 0x30007FC0中kernel在哪定义,为什么可以直接引用?针对这个问题展开思考最终定位到 ...

  6. C# 出现base-64 字符数组的无效长度的解决办法

    最近的一个项目,在传递参数时,在Win2003上正常,在Win7下抛出“base-64 字符数组的无效长度”这样的错误 对比了一下经过Convert.ToBase64String()转换过的参数发现, ...

  7. Database.SQL.join

    inner join 和 outer join的区别 http://en.wikipedia.org/wiki/Join_%28SQL%29

  8. linux查看文件被哪个进程占用?

    1> 如果文件是端口号 netstat -ntlp | grep portNum [root@localhost root]# netstat -ntlp Active Internet con ...

  9. 洛谷1066 2^k进制数

    原题链接 大力猜结论竟然猜对了.. 对于一对\(k,w\),我们可以把\(w\)位划分成\(k\)位一段的形式,每一段就是转换成十进制后的一位,这个从题面的解释中应该可以理解. 先不考虑可能多出(即剩 ...

  10. AppStore企业账号打包发布APP流程详解

    一.通过企业账号申请证书 1 Certificate Signing Request (CSR)文件 在Mac系统中进入“钥匙串访问”,选择“钥匙串访问”-“证书助理”-“从证书颁发机构请求证书…”, ...