【BZOJ1434】[ZJOI2009]染色游戏(博弈论)

题面

BZOJ

洛谷

题解

翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时的\(SG\)函数的异或和。现在要考虑的是如何求解单一硬币存在于场上时的\(SG\)函数,这种东西。。。。打表吧。。。

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int lowbit(int x){return x&(-x);}
int getSG(int i,int j)
{
if(i&&j)return i+j;
return log2(lowbit(i+j+1));
}
int n,m,SG;char g[500];bool vis[500];
int main()
{
int T=read();
while(T--)
{
n=read();m=read();SG=0;
for(int i=0;i<n;++i)
{
scanf("%s",g);
for(int j=0;j<m;++j)
if(g[j]=='T')
vis[getSG(i,j)]^=1;
}
for(int i=0;i<n+m-1;++i)if(vis[i])SG=1;
puts(SG?"-_-":"=_=");
for(int i=0;i<n+m-1;++i)vis[i]=0;
}
return 0;
}

【BZOJ1434】[ZJOI2009]染色游戏(博弈论)的更多相关文章

  1. BZOJ1434:[ZJOI2009]染色游戏(博弈论)

    Description 一共n×m个硬币,摆成n×m的长方形.dongdong和xixi玩一个游戏,每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个硬币属于这个连通块并且所有其他硬 ...

  2. bzoj1434 [ZJOI2009]染色游戏

    Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...

  3. [luogu2594 ZJOI2009]染色游戏(博弈论)

    传送门 Solution 对于硬币问题,结论是:当前局面的SG值等于所有背面朝上的单个硬币SG值的异或和 对于求单个背面朝上的硬币SG值...打表找规律吧 Code //By Menteur_Hxy ...

  4. [ZJOI2009]染色游戏

    Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...

  5. BZOJ 1434: [ZJOI2009]染色游戏

    一开始想这不$SG$裸题...然后发现100组数据...然后发现连通块是任意的求$SG$貌似要暴力枚举.... 然后想了一下1维,手动打表,每次就是队当前所有异或后缀和求$mex$,好像就是$lowb ...

  6. luogu2594 [ZJOI2009]染色游戏

    做法其他题解已经说得很清楚了,但似乎没有对于本题 SG 函数正确性的证明,我来口胡一下( 证明: 猜想: \[\operatorname{SG}(i,j)=\begin{cases}\operator ...

  7. BZOJ 1411&&Vijos 1544 : [ZJOI2009]硬币游戏【递推,快速幂】

    1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 897  Solved: 394[Submit][Status ...

  8. POJ.1067 取石子游戏 (博弈论 威佐夫博弈)

    POJ.1067 取石子游戏 (博弈论 威佐夫博弈) 题意分析 简单的威佐夫博弈 博弈论快速入门 代码总览 #include <cstdio> #include <cmath> ...

  9. HDU.2516 取石子游戏 (博弈论 斐波那契博弈)

    HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...

随机推荐

  1. Shell调试篇 转

    检查语法 -n选项只做语法检查,而不执行脚本. sh -n script_name.sh 启动调试 sh -x script_name.sh 进入调试模式后,Shell依次执行读入的语句,产生的输出中 ...

  2. React等开发工具记录

    React Native :React 起源于 Facebook 的内部项目,结合了 Web 应用和 Native 应用的优势,可以使用 JavaScript 来开发 iOS 和 Android 原生 ...

  3. Android 下拉刷新上拉加载PullToRefresh

    https://github.com/823546371/PullToRefresh http://www.jianshu.com/p/0f5d0991efdc

  4. Servlet——提交表单信息,Servlet之间的跳转

    HTML表单标签:<form></form> 属性: actoion:  提交到的地址,默认为当前页面 method:  表单提交方式 有get和post两种方式,默认为get ...

  5. Hadoop日记Day9---HDFS的java访问接口

    一.搭建Hadoop 开发环境 我们在工作中写完的各种代码是在服务器中运行的,HDFS 的操作代码也不例外.在开发阶段,我们使用windows 下的eclipse 作为开发环境,访问运行在虚拟机中的H ...

  6. ubuntu12.04安装OVS

    1.下载openVswitch ovs官网 2.运行如下脚本 #!/bin/bash cd /home/sdn/ovs/openvswitch- rm /usr/local/etc/openvswit ...

  7. Spring MVC统一异常处理

    实际上Spring MVC处理异常有3种方式: (1)一种是在Controller类内部使用@ExceptionHandler使用注解实现异常处理: 可以在Controller内部实现更个性化点异常处 ...

  8. KNN算法的R语言实现

    近邻分类 简言之,就是将未标记的案例归类为与它们最近相似的.带有标记的案例所在的类. 应用领域: 1.计算机视觉:包含字符和面部识别等 2.推荐系统:推荐受众喜欢电影.美食和娱乐等 3.基因工程:识别 ...

  9. 一个可以代替冗长switch-case的消息分发小框架

    在项目中,我需要维护一个应用层的字节流协议.这个协议的每条报文都是一个字节数组,数组的头两个字节表示消息的传送方向,第三.四个字节表示消息ID,也就是消息种类,再往后是消息内容.时间戳.校验码等……整 ...

  10. 对NP问题的一点感想

    一.概述 回忆欧拉回路问题,要求找出一条经过图的每条边恰好一次的路径,这个问题是线性可解的.哈密尔顿圈问题是找一个简单圈,该圈包括图的每一个顶点.对于这个问题,现在还没有发现线性算法. 对于有向图的单 ...