BZOJ 2226 [Spoj 5971] LCMSum

这道题和上一道题十分类似。

\[\begin{align*}
\sum_{i = 1}^{n}\operatorname{LCM}(i, n) &= \sum_{i = 1}^{n}\frac{i \times n}{\operatorname{gcd}(i, n)}\\
&= n \times \sum_{i = 1}^{n}\frac{i}{\operatorname{gcd}(i, n)}
\end{align*}\]

设\(d = \operatorname{gcd}(i, n)\),则\(d | n\)且\(\operatorname{gcd}(\frac{i}{d}, \frac{n}{d}) = 1\)。

则每个\(n\)的因数\(d\)的贡献是小于等于\(d\)的所有数(\(\frac{i}{d}\))之和。而这个值等于\(\frac{\phi(d) * d}{2}\)。

所以答案就是:

\[\sum_{d | n}\frac{\phi(d) * d}{2}
\]

注意这道题卡常卡得非常难受,所以能预处理的都预处理吧。

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c > '9' || c < '0')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 1000000;
int T, n, lst[N + 5], cnt;
bool notprime[N + 5];
ll ans, phi[N + 5];
void init(){
phi[1] = 1;
for(int i = 2; i <= N; i++){
if(!notprime[i]) lst[++cnt] = i, phi[i] = i - 1;
for(int j = 1; j <= cnt && lst[j] * i <= N; j++){
notprime[lst[j] * i] = 1;
if(i % lst[j] == 0){
phi[lst[j] * i] = lst[j] * phi[i];
break;
}
phi[i * lst[j]] = phi[i] * (lst[j] - 1);
}
}
for(int i = 2; i <= N; i++)
phi[i] = phi[i] * i / 2;
} int main(){ init();
read(T);
while(T--){
read(n);
ans = 0;
for(int i = 1; i * i <= n; i++)
if(n % i == 0){
ans += phi[i];
if(i * i < n) ans += phi[n / i];
}
write(ans * n), enter;
} return 0;
}

BZOJ 2226 [Spoj 5971] LCMSum 最大公约数之和 | 数论的更多相关文章

  1. bzoj 2226: [Spoj 5971] LCMSum 数论

    2226: [Spoj 5971] LCMSum Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 578  Solved: 259[Submit][St ...

  2. BZOJ 2226 [Spoj 5971] LCMSum | 数论拆式子

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=2226 题解: 题目要求的是Σn*i/gcd(i,n) i∈[1,n] 把n提出来变成Σi/g ...

  3. BZOJ 2226: [Spoj 5971] LCMSum 莫比乌斯反演 + 严重卡常

    Code: #pragma GCC optimize(2) #include<bits/stdc++.h> #define setIO(s) freopen(s".in" ...

  4. BZOJ 2226 [Spoj 5971] LCMSum

    题解:枚举gcd,算每个gcd对答案的贡献,贡献用到欧拉函数的一个结论 最后用nlogn预处理一下,O(1)出答案 把long long 打成int 竟然没看出来QWQ #include<ios ...

  5. BZOJ2226: [Spoj 5971] LCMSum

    题解: 考虑枚举gcd,然后问题转化为求<=n且与n互质的数的和. 这是有公式的f[i]=phi[i]*i/2 然后卡一卡时就可以过了. 代码: #include<cstdio> # ...

  6. 【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)

    [BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n ...

  7. 【bzoj2226】[Spoj 5971] LCMSum 欧拉函数

    题目描述 Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Leas ...

  8. 51nod 1040 最大公约数之和 | 数论

    给出一个n,求1-n这n个数,同n的最大公约数的和 n<=1e9 考虑枚举每个因数,对答案贡献的就是个数*大小

  9. bzoj 2226 LCMSum 欧拉函数

    2226: [Spoj 5971] LCMSum Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1123  Solved: 492[Submit][S ...

随机推荐

  1. 【转】Google Chrome中顺时针/逆时针滚动圆的含义

    当浏览器处于以下状态时,看起来好像圆圈是逆时针滚动的: 解析主机名 连接服务器 等待响应(从服务器发送第一个字节之前?) 当浏览器处于以下状态时,圆圈似乎顺时针滚动: 加载页面或引用的资源 在标签页中 ...

  2. redis系列--redis4.0深入持久化

    前言 在之前的博文中已经详细的介绍了redis4.0基础部分,并且在memcache和redis对比中提及redis提供可靠的数据持久化方案,而memcache没有数据持久化方案,本篇博文将详细介绍r ...

  3. 20155227《网络对抗》Exp9 Web安全基础实践

    20155227<网络对抗>Exp9 Web安全基础实践 实验内容 关于WebGoat Cross-Site Scripting(XSS)练习 Injection Flaws练习 CSRF ...

  4. 【Java框架型项目从入门到装逼】第十三节 用户新增功能完结篇

    这一节,我们把用户新增的功能继续做一个完善.首先,新增成功后,需要给前台返回一个信息,就是告诉浏览器,这次用户新增的操作到底是成功了呢,还是失败了呢?为此,我们需要专门引入一个结果类,里面只有两个属性 ...

  5. switch语句的执行过程

    switch语句的执行规则如下: 1.从第一个case开始判断,不匹配则跳到下一个case继续判断: 2.遇到break则跳出switch语句: 3.default一般是没有匹配项才执行的,一般是放在 ...

  6. Phabricator 在 centos 系统下发送 Email的配置

    前言 phabricator 配置email 其实很简单,配好smtp 服务器.端口.协议.用户名和登陆密码,但过程却好麻烦. 开始时跟着官网配 sendmail ,又 google 又 baidu, ...

  7. PAT甲题题解-1009. Product of Polynomials (25)-多项式相乘

    多项式相乘 注意相乘结果的多项式要开两倍的大小!!! #include <iostream> #include <cstdio> #include <algorithm& ...

  8. Vim操作指南

    vim具有6种基本模式和5种派生模式. 基本模式 普通模式 插入模式 可视模式 选择模式 命令行模式 Ex模式 派生模式 操作符等待模式 插入普通模式 插入可视模式 插入选择模式 替换模式 1.移动光 ...

  9. linux内核分析--操作系统是如何工作的?

    一个简单的时间片轮转多道程序 操作系统的"两把剑":中断上下文(保存现场和恢复现场)和进程上下文的切换 源代码的分析 *使用的源代码为视频中所使用的精简内核的源代码 首先分析myp ...

  10. Linux内核设计(第一周)——从汇编语言出发理解计算机工作原理

    Linux内核设计(第一周)——从汇编语言出发理解计算机工作原理 计算机工作原理 汇编指令 C语言代码汇编分析 by苏正生 原创作品转载请注明出处 <Linux内核分析>MOOC课程htt ...