BZOJ 2226 [Spoj 5971] LCMSum 最大公约数之和 | 数论
BZOJ 2226 [Spoj 5971] LCMSum
这道题和上一道题十分类似。
\sum_{i = 1}^{n}\operatorname{LCM}(i, n) &= \sum_{i = 1}^{n}\frac{i \times n}{\operatorname{gcd}(i, n)}\\
&= n \times \sum_{i = 1}^{n}\frac{i}{\operatorname{gcd}(i, n)}
\end{align*}\]
设\(d = \operatorname{gcd}(i, n)\),则\(d | n\)且\(\operatorname{gcd}(\frac{i}{d}, \frac{n}{d}) = 1\)。
则每个\(n\)的因数\(d\)的贡献是小于等于\(d\)的所有数(\(\frac{i}{d}\))之和。而这个值等于\(\frac{\phi(d) * d}{2}\)。
所以答案就是:
\]
注意这道题卡常卡得非常难受,所以能预处理的都预处理吧。
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c > '9' || c < '0')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 1000000;
int T, n, lst[N + 5], cnt;
bool notprime[N + 5];
ll ans, phi[N + 5];
void init(){
phi[1] = 1;
for(int i = 2; i <= N; i++){
if(!notprime[i]) lst[++cnt] = i, phi[i] = i - 1;
for(int j = 1; j <= cnt && lst[j] * i <= N; j++){
notprime[lst[j] * i] = 1;
if(i % lst[j] == 0){
phi[lst[j] * i] = lst[j] * phi[i];
break;
}
phi[i * lst[j]] = phi[i] * (lst[j] - 1);
}
}
for(int i = 2; i <= N; i++)
phi[i] = phi[i] * i / 2;
}
int main(){
init();
read(T);
while(T--){
read(n);
ans = 0;
for(int i = 1; i * i <= n; i++)
if(n % i == 0){
ans += phi[i];
if(i * i < n) ans += phi[n / i];
}
write(ans * n), enter;
}
return 0;
}
BZOJ 2226 [Spoj 5971] LCMSum 最大公约数之和 | 数论的更多相关文章
- bzoj 2226: [Spoj 5971] LCMSum 数论
2226: [Spoj 5971] LCMSum Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 578 Solved: 259[Submit][St ...
- BZOJ 2226 [Spoj 5971] LCMSum | 数论拆式子
题目: http://www.lydsy.com/JudgeOnline/problem.php?id=2226 题解: 题目要求的是Σn*i/gcd(i,n) i∈[1,n] 把n提出来变成Σi/g ...
- BZOJ 2226: [Spoj 5971] LCMSum 莫比乌斯反演 + 严重卡常
Code: #pragma GCC optimize(2) #include<bits/stdc++.h> #define setIO(s) freopen(s".in" ...
- BZOJ 2226 [Spoj 5971] LCMSum
题解:枚举gcd,算每个gcd对答案的贡献,贡献用到欧拉函数的一个结论 最后用nlogn预处理一下,O(1)出答案 把long long 打成int 竟然没看出来QWQ #include<ios ...
- BZOJ2226: [Spoj 5971] LCMSum
题解: 考虑枚举gcd,然后问题转化为求<=n且与n互质的数的和. 这是有公式的f[i]=phi[i]*i/2 然后卡一卡时就可以过了. 代码: #include<cstdio> # ...
- 【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)
[BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n ...
- 【bzoj2226】[Spoj 5971] LCMSum 欧拉函数
题目描述 Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes the Leas ...
- 51nod 1040 最大公约数之和 | 数论
给出一个n,求1-n这n个数,同n的最大公约数的和 n<=1e9 考虑枚举每个因数,对答案贡献的就是个数*大小
- bzoj 2226 LCMSum 欧拉函数
2226: [Spoj 5971] LCMSum Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 1123 Solved: 492[Submit][S ...
随机推荐
- R语言--输入输出
基本输入输出 输入: readline, edit, fix 输出: print, cat 输出重定向 sink #基本输入输出 x=readline('请输入:') #读取输入,一行为一个字符串 x ...
- 大数据入门第二十一天——scala入门(一)并发编程Actor
注:我们现在学的Scala Actor是scala 2.10.x版本及以前版本的Actor. Scala在2.11.x版本中将Akka加入其中,作为其默认的Actor,老版本的Actor已经废弃 一. ...
- Django Rest Framework源码剖析(一)-----认证
一.简介 Django REST Framework(简称DRF),是一个用于构建Web API的强大且灵活的工具包. 先说说REST:REST是一种Web API设计标准,是目前比较成熟的一套互联网 ...
- mfc 类模板
类模板 创建类模板 添加成员变量 添加成员函数 定义类模板对象 一.创建类模板 template <class T,class T2> template <class T> 二 ...
- python 回溯法 子集树模板 系列 —— 16、爬楼梯
问题 某楼梯有n层台阶,每步只能走1级台阶,或2级台阶.从下向上爬楼梯,有多少种爬法? 分析 这个问题之前用分治法解决过.但是,这里我要用回溯法子集树模板解决它. 祭出元素-状态空间分析大法:每一步是 ...
- Security3: 架构和权限
架构(Schema)是数据库对象(比如,Table,View,存储过程等)的容器,授予用户对Schema访问的权限,就是授予用户对Schema下所有object的访问权限. 一,架构(Schema)是 ...
- Anibei前端基础学习
html.html5.CSS2.CSS3.JQuery.Vue.js学习,后端程序媛开始学习前端开发啦.
- GitHub 新手教程 三,Git Bash
1,通过 开始菜单 启动 Git Bash,或者 在 cmd 下执行以下命令: D:\SoftWare\Git\git-bash.exe --cd-to-home (D:\SoftWare\Git 是 ...
- Hadoop 部署文档
Hadoop 部署文档 1 先决条件 2 下载二进制文件 3 修改配置文件 3.1 core-site.xml 3.2 hdfs-site.xml 3.3 mapred-site.xml 3.4 ya ...
- Python与rrdtool的结合模块
rrdtool(round robin database)工具为环状数据库的存储格式,round robin是一种处理定量数据以及当前元素指针的技术.rrdtool主要用来跟踪对象的变化情况,生成这些 ...