Mountainous landscape
Description
现在在平面上给你一条折线 \(P_1P_2 \cdots P_n\) 。 \(x\) 坐标是严格单调递增的。对于每一段折线 \(P_iP_{i+1}\) ,请你找一个最小的 \(j\) ,使得 \(j \gt i\) 且CJB走在 \(P_iP_{i+1}\) 上能看到折线 \(P_jP_{j+1}\) 的任何一个点。注意,CJB的高度无限趋于0但不可忽略。也就是说,请找一条编号最小的折线 \(P_jP_{j+1}\) 使得 \(j \gt i\) 且线段 \(P_jP_{j+1}\)相交。
Solution
首先手玩。
考虑每一条射线\(\alpha=(P_i,P_{i+1})\)的答案,其实就是最小的\(j\),满足\(j>i\)且\(P_{j+1}\)严格在该射线上方。
有效的、需要考虑的\(P_{j+1}\),一定在由\((i,n]\)这些点构成的凸包上。我们相当于要判定一条射线\(\alpha\)与凸包是否有交,并找到交线的具体位置。
第一个问题很好解决,二分凸包上最逼近射线\(\alpha\)斜率的点,若其在射线上方则凸包与射线有交,否则直接无解。
关键是第二个问题。我们知道射线与凸包有交,甚至可以知道具体是哪一条凸包边与射线相交,却不知道是哪一条原边与射线有交,无法输出答案。我们发现这个凸包的信息已经不足以解决我们的问题了,但我们可以二分继续做:如果按相同方法判定左凸包也与射线有交,那么显然答案在左边,递归左凸包计算,并返回其的答案;否则,只能到右凸包里寻找答案。
单次询问复杂度\(\mathcal O(log^2)\)。
关键思路是无法确定具体方案的时候,考虑利用存在性二分答案。另一个Tips是有关线段树的二分问题,不要总想着用二分套线段树,而应该想想能否用线段树上二分,后者一般是两个\(log\),而前者是三个\(log\)。
Code
#include <cstdio>
#include <vector>
#define pb push_back
using namespace std;
namespace IO{
const int S=10000005;
char buffer[S];
int pos;
void Load(){
pos=0;
fread(buffer,1,S,stdin);
}
char getChar(){
return buffer[pos++];
}
int getInt(){
int x=0,f=1;
char c=getChar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getChar();}
while('0'<=c&&c<='9'){x=x*10+c-'0';c=getChar();}
return x*f;
}
}
using IO::getInt;
const int N=100005;
const double EPS=1e-6;
typedef long long ll;
typedef vector<int> vi;
int n;
struct Dot{ int x,y; }a[N];
bool slope_dec(int i,int j,int k){
return 1ll*(a[j].y-a[i].y)*(a[k].x-a[j].x)>1ll*(a[j].x-a[i].x)*(a[k].y-a[j].y);
}
double slope(int i,int j){
return 1.0*(a[j].y-a[i].y)/(a[j].x-a[i].x);
}
void getline(int i,int j,double &k,double &b){
k=slope(i,j);
b=a[i].y-k*a[i].x;
}
namespace SEG{
const int S=N*2;
int rt,sz;
int ch[S][2];
vi hull[S];
int top[S];
double k,b;
void build(int &u,int l,int r){
u=++sz;
hull[u]=vi(r-l+2);
top[u]=0;
for(int i=l;i<=r+1;i++){
while(top[u]>=2&&!slope_dec(hull[u][top[u]-2],hull[u][top[u]-1],i))
top[u]--;
hull[u][top[u]++]=i;
}
hull[u].resize(top[u]);
if(l==r)
return;
int mid=(l+r)>>1;
build(ch[u][0],l,mid);
build(ch[u][1],mid+1,r);
}
void set(double _k,double _b){
k=_k;
b=_b;
}
int find(int u){
int l=0,r=top[u]-2,mid;
while(l<=r){
int mid=(l+r)>>1;
if(slope(hull[u][mid],hull[u][mid+1])>k)
l=mid+1;
else
r=mid-1;
}
int who=hull[u][r+1];
return (k*a[who].x+b+EPS<=a[who].y)?who-1:0;
}
int query(int u,int l,int r,int L,int R){
int mid=(l+r)>>1;
if(L<=l&&r<=R){
if(l==r)
return find(u);
if(!find(u))
return 0;
if(find(ch[u][0]))
return query(ch[u][0],l,mid,L,R);
else
return query(ch[u][1],mid+1,r,L,R);
}
if(R<=mid)
return query(ch[u][0],l,mid,L,R);
else if(mid<L)
return query(ch[u][1],mid+1,r,L,R);
else{
int left=query(ch[u][0],l,mid,L,mid);
if(left)
return left;
return query(ch[u][1],mid+1,r,mid+1,R);
}
}
}
void readData(){
n=getInt();
for(int i=1;i<=n;i++)
a[i].x=getInt(), a[i].y=getInt();
}
void solve(){
for(int i=1;i<n;i++)
if(i<=n-2){
double k,b;
getline(i,i+1,k,b);
SEG::set(k,b);
printf("%d ",SEG::query(SEG::rt,1,n-1,i+1,n-1));
}
else
printf("0 ");
puts("");
}
int main(){
IO::Load();
readData();
SEG::build(SEG::rt,1,n-1);
solve();
return 0;
}
Mountainous landscape的更多相关文章
- BZOJ4049 [Cerc2014] Mountainous landscape
首先对于一个给定的图形,要找到是否存在答案非常简单... 只要维护当然图形的凸包,看一下是否有线段在这条直线上方,直接二分即可,单次询问的时间复杂度$O(logn)$ 现在用线段树维护凸包,即对于一个 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- NOIp2018模拟赛三十五
两道大数据结构把我砸懵 成绩:未提交 Orz xfz两道正解 A:[BZOJ4049][CREC2014B]mountainous landscape B:CJB的大作(CF改编题)
- SAP SLT (Landscape Transformation) 企业定制培训
No. Item Remark 1 SAP SLT概述 SAP Landscape Transformation Overview 2 SAP SLT 安装与配置<1> for abap ...
- iPad apple-touch-startup-image实现portrait和landscape
iPad apple-touch-startup-image实现portrait和landscape 为ipad制作web应用程序的启动画面时发现个问题,只能显示竖屏图,横屏图出不来,网上的朋友都说无 ...
- JS 获取和监听屏幕方向变化(portrait / landscape)
移动设备的屏幕有两个方向: landscape(横屏)和portrait(竖屏),在某些情况下需要获取设备的屏幕方向和监听屏幕方向的变化,因此可以使用Javascript提供的 MediaQueryL ...
- [JS代码]如何判断ipad或者iphone是否为横屏或者竖屏 - portrait或者landscape
//判断横屏或者竖屏 function orient() { //alert('gete'); if (window.orientation == 0 || window.orientation == ...
- iOS的横屏(Landscape)与竖屏(Portrait)InterfaceOrientation
http://www.molotang.com/articles/1530.html 接着上篇写的触摸事件,这次借机会整理下iOS横屏和竖屏的翻转方向支持,即InterfaceOrientation相 ...
- CNCF CloudNative Landscape
cncf landscape CNCF Cloud Native Interactive Landscape 1. App Definition and Development 1. Database ...
随机推荐
- Kafka 集群部署
kafka是一个分布式消息队列,需要依赖ZooKeeper,请先安装好zk集群 kafka安装包解压 $ -0.9.0.1.tgz $ -0.9.0.1 /usr/kafka $ cd /usr/ka ...
- php web开发安全之sql注入和防范:(一)简单的select语句注入和防范
sql注入主要是指通过在get.post请求参数中构造sql语句,以修改程序运行时所执行的sql语句,从而实现获取.修改信息甚至是删除数据的目的,sql被注入的原因主要是代码编写的有问题(有漏洞),只 ...
- jQuery对底部导航进行跳转并高亮显示
这两天弄一个mui的底部菜单,有点费时了,尝试了用vue写,纯js写,还有根据mui的写,还是有些问题和麻烦.直到看了网上的一些例子,才想明白,之前一直是一种点击触发事件才高亮的思维去做,这个虽然可以 ...
- Scala_方法和函数
方法的定义 def functionName([参数列表]) : [return type] = { function body return [] } 如果没有=和{}包裹的方法体,那么该方法被隐式 ...
- Django Rest Framework源码剖析(五)-----解析器
一.简介 解析器顾名思义就是对请求体进行解析.为什么要有解析器?原因很简单,当后台和前端进行交互的时候数据类型不一定都是表单数据或者json,当然也有其他类型的数据格式,比如xml,所以需要解析这类数 ...
- [清华集训2015 Day1]玛里苟斯-[线性基]
Description Solution 考虑k=1的情况.假设所有数中,第i位为1的数的个数为x,则最后所有的子集异或结果中,第i位为1的个数为$(C_{k}^{1}+C_{k}^{3}+...)$ ...
- python sorted三个例子
# 例1. 按照元素出现的次数来排序 seq = [2,4,3,1,2,2,3] # 按次数排序 seq2 = sorted(seq, key=lambda x:seq.count(x)) print ...
- effective c++ 笔记 (9-12)
//---------------------------15/03/29---------------------------- //#9 绝不在构造和析构过程中调头virtual函数 { / ...
- C语言中指针占据内存空间问题
以前一直有个疑问,指向不同类型的指针到底占用的内存空间是多大呢? 这个问题我多次问过老师,老师的答案是"指向不同类型的指针占据的内存空间大小不同",我一直很之一这个答案,今天我就做 ...
- 前端菜鸟起飞之学会ps切图
由于之前只顾着追求效率,没有学习过PS,但其实这是前端开发人员需要学会的技能之一,曾经看过一个大佬的前端经验分享说他在招聘时遇到不会切图的会直接pass掉,可见前端开发人员学会切图是多么重要.通过观看 ...