预处理前后缀异或和,用trie得到前后缀最大答案,枚举中间点把左右两边加起来就是当前中间点的最大答案了...这个操作没见过,比较有意思,记录一下

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=, inf=1e9;
struct poi{int nxt[];}tree[maxn*];
int n, ans, tott;
int a[maxn], suml[maxn], sumr[maxn], ansl[maxn], ansr[maxn];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-'&&(f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
inline int getans(int x)
{
int ans=, now=;
for(int i=, y;~i;i--)
if(tree[now].nxt[(y=(x&(<<i))!=)^])
ans+=(<<i), now=tree[now].nxt[y^];
else now=tree[now].nxt[y];
return ans;
}
inline void insert(int x)
{
int now=;
for(int i=, y;~i;i--)
if(tree[now].nxt[y=(x&(<<i))!=]) now=tree[now].nxt[y];
else tree[now].nxt[y]=++tott, now=tott;
}
int main()
{
read(n);
for(int i=;i<=n;i++) read(a[i]), suml[i]=suml[i-]^a[i];
for(int i=n;i;i--) sumr[i]=sumr[i+]^a[i];
insert();
for(int i=;i<=n;i++) ansl[i]=max(ansl[i-], getans(suml[i])), insert(suml[i]);
memset(tree, , sizeof(tree)); insert();
for(int i=n;i;i--) ansr[i]=max(ansr[i+], getans(sumr[i])), insert(sumr[i]);
for(int i=;i<=n;i++) ans=max(ans, ansl[i]+ansr[i]);
printf("%d\n", ans);
}

bzoj2134: 单选错位(trie)的更多相关文章

  1. bzoj2134单选错位

    bzoj2134单选错位 题意: 试卷上n道选择题,每道分别有ai个选项.某人全做对了,但第i道题的答案写在了第i+1道题的位置,第n道题答案写在第1题的位置.求期望能对几道.n≤10000000 题 ...

  2. BZOJ2134——单选错位

    1.题意:这就是说考试的时候抄串了一位能对几个(雾) 2.分析:这是一个期望问题,期望就是平均,E(a+b)=E(a)+E(b),所以我们直接算出每个点能对几个就好,那么就是1/max(a[i],a[ ...

  3. BZOJ2134: 单选错位

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2134 题解:因为每个答案之间是互不影响的,所以我们可以挨个计算. 假设当前在做 i 题目,如果 ...

  4. BZOJ2134: 单选错位(期望乱搞)

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1101  Solved: 851[Submit][Status][Discuss] Descripti ...

  5. BZOJ2134 luoguP1297 [国家集训队]单选错位

    单选错位 [问题描述] gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,a ...

  6. BZOJ 2134: 单选错位( 期望 )

    第i个填到第i+1个的期望得分显然是1/max(a[i],a[i+1]).根据期望的线性性, 我们只需将每个选项的期望值累加即可. ---------------------------------- ...

  7. BZOJ_2134_单选错位——期望DP

    BZOJ_2134_单选错位——期望DP 题意: 分析:设A为Ai ∈ [1,ai+1] 的概率,B为Ai = A(imodn+1)的概率显然P(A|B) = 1,那么根据贝叶斯定理P(B) = P( ...

  8. P1297 [国家集训队]单选错位(期望)

    P1297 [国家集训队]单选错位 期望入门 我们考虑涂到第$i$道题时的情况 此时题$i$答案有$a[i]$种,我们可能涂$a[i+1]$种 分类讨论: 1.$a[i]>=a[i+1]$: 可 ...

  9. Luogu P1297 [国家集训队]单选错位

    P1297 [国家集训队]单选错位 题目背景 原 <网线切割>请前往P1577 题目描述 gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上 ...

随机推荐

  1. 20155302《网络对抗》Exp6 信息收集与漏洞扫描

    20155302<网络对抗>Exp6 信息收集与漏洞扫描 实验内容 (1)各种搜索技巧的应用 (2)DNS IP注册信息的查询 (3)基本的扫描技术:主机发现.端口扫描.OS及服务版本探测 ...

  2. Linux 学习日记 2 (常用命令 + deb包的安装)

    常用命令:以下是一些比较常用的命令,主要是关于安装软件的一些命令 @_@ cd ~/下载(文件名)/ //进入这个文件夹 , ~指的是根目录 cd .. //返回上一级文件夹 sudo apt-get ...

  3. 【Orleans开胃菜系列1】不要被表象迷惑

    [Orleans开胃菜系列1]不要被表象迷惑 /** * prism.js Github theme based on GitHub's theme. * @author Sam Clarke */ ...

  4. node基础-文件系统-文件写操作

    文件操作频率最高的就是读跟写.nodejs的文件的读取API在<node基础-文件系统-读取文件>里已经简单介绍过,本文就简单介绍下nodejs的文件写API. nodejs的文件操作均提 ...

  5. 深入浅出etcd系列 – 心跳和选举

    作者:宝爷 校对:DJ 1.绪论 etcd作为华为云PaaS的核心部件,实现了PaaS大多数组件的数据持久化.集群选举.状态同步等功能.如此重要的一个部件,我们只有深入地理解其架构设计和内部工作机制, ...

  6. 并发系列(一)-----synchronized关键字

    一 简介 说到并发不得不提的synchronized,synchronized关键字是元老级别的角色.在Java SE 1.6之前synchronized被称为是重量,在1.6之后对同步进行了一系列的 ...

  7. 更改jenkins的默认工作空间并迁移插件和配置数据

    最近刚使用阿里云ECS centos服务器,购买的是40G的系统盘,60G的数据盘. 昨天在查看服务器磁盘空间的时候,偶然发现 /dev/vda1 下面40G的空间已使用17G, 因为服务器才开始使用 ...

  8. IT简历

    对很多IT毕业生来说,写简历投简历是必不可少的.一个好的简历已是面试成功的一半. 简历的目的是为了引人注意,争取让HR主动联系你去面试,不可避免的在简历中掺杂着一些水分,但是能争取到面试机会,再与HR ...

  9. 转-PHP 设计模式 之策略模式 应用场景 Strategy Pattern

    一.前言 关于设计模式的文章,园子里实在是太多太多,而且讲解的也非常精彩,那为什么我还要在这里记录下这篇文章?本文以实际项目应用“自己动手写工具--XSmartNote”为切入点,来讲述策略模式的应用 ...

  10. Linux内核分析作业第二周

    操作系统是如何工作的 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.函数调用堆栈 1.计算机工作三 ...