Every year the cows hold an event featuring a peculiar version of hopscotch that involves carefully jumping from rock to rock in a river. The excitement takes place on a long, straight river with a rock at the start and another rock at the end, Lunits away from the start (1 ≤ L ≤ 1,000,000,000). Along the river between the starting and ending rocks, N (0 ≤ N ≤ 50,000) more rocks appear, each at an integral distance Di from the start (0 < Di < L).

To play the game, each cow in turn starts at the starting rock and tries to reach the finish at the ending rock, jumping only from rock to rock. Of course, less agile cows never make it to the final rock, ending up instead in the river.

Farmer John is proud of his cows and watches this event each year. But as time goes by, he tires of watching the timid cows of the other farmers limp across the short distances between rocks placed too closely together. He plans to remove several rocks in order to increase the shortest distance a cow will have to jump to reach the end. He knows he cannot remove the starting and ending rocks, but he calculates that he has enough resources to remove up to rocks (0 ≤ M ≤ N).

FJ wants to know exactly how much he can increase the shortest distance *before* he starts removing the rocks. Help Farmer John determine the greatest possible shortest distance a cow has to jump after removing the optimal set of M rocks.

Input

Line 1: Three space-separated integers: LN, and M 
Lines 2.. N+1: Each line contains a single integer indicating how far some rock is away from the starting rock. No two rocks share the same position.

Output

Line 1: A single integer that is the maximum of the shortest distance a cow has to jump after removing M rocks

Sample Input

25 5 2
2
14
11
21
17

Sample Output

4

Hint

Before removing any rocks, the shortest jump was a jump of 2 from 0 (the start) to 2. After removing the rocks at 2 and 14, the shortest required jump is a jump of 4 (from 17 to 21 or from 21 to 25).
 
#include<iostream>
#include<algorithm>
using namespace std;
int pos[];
int l,n,m; bool C(int d){
int last=;
for(int i=;i<n-m;i++){
int cur=last+;
while(cur<n&&pos[cur]-pos[last]<d)
cur++;
if(cur==n)
return false;
last=cur;
}
return true;
} int main(){
cin>>l>>n>>m;
for(int i=;i<n;i++){
cin>>pos[i];
}
pos[n++]=;
pos[n++]=l;
sort(pos,pos+n);
int lb=,ub=l+;
while(ub-lb>){
int mid=(ub+lb)/;
if(C(mid))
lb=mid;
else
ub=mid;
}
cout<<lb<<endl;
return ;
}

POJ3258--River Hopscotch(Binary Search similar to POJ2456)的更多相关文章

  1. POJ--3258 River Hopscotch (最小值最大化C++)

    River Hopscotch Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15273   Accepted: 6465 ...

  2. POJ3258 River Hopscotch 2017-05-11 17:58 36人阅读 评论(0) 收藏

    River Hopscotch Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13598   Accepted: 5791 ...

  3. POJ3258 River Hopscotch —— 二分

    题目链接:http://poj.org/problem?id=3258 River Hopscotch Time Limit: 2000MS   Memory Limit: 65536K Total ...

  4. poj3258 River Hopscotch(二分最小值,好题)

    https://vjudge.net/problem/POJ-3258 二分最小值,判断需要删去的点的个数,如果大于给定,则直接return 0,则说明该数需要再小. 最后注意,起点是0终点是l,起点 ...

  5. POJ3258 River Hopscotch

    地址 别人的代码,自己边界总是控制不好,还不知道哪里错了!思维!这种问题代码越简洁反而越不容易错吧.. #include<stdio.h> #include<algorithm> ...

  6. POJ3258 River Hopscotch(二分最大化最小值)

    题目链接:http://poj.org/problem?id=3258 题意:给n个石头,起点和终点也是两个石头,去掉这石头中的m个,使得石头间距的最小值最大. 思路:二分石头间的最短距离,每次贪心地 ...

  7. Algo: Binary search

    二分查找的基本写法: #include <vector> #include <iostream> int binarySearch(std::vector<int> ...

  8. River Hopscotch(二分POJ3258)

    River Hopscotch Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9263 Accepted: 3994 Descr ...

  9. 96. Unique Binary Search Trees

    题目: Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For e ...

随机推荐

  1. Vue 安装脚手架 工具 vue-cli (最新)

    假如您安装过旧版脚手架工具(vue-cli),您可以通过 npm uninstall vue-cli -g 或 yarn global remove vue-cli卸载. Vue CLI 需要Node ...

  2. ES6 Reflect的认识

    首先我们要了解一下,为什么会新添加这么一个全局对象?如果你看过Reflect的一些函数,你就会发现,这个对象上的方法基本上都可以从Object上面找到,找不到的那些,也是可以通过对对象命令式的操作去实 ...

  3. andorid 单选与复选

    activity_ui1.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayout x ...

  4. gulp ( http://markpop.github.io/2014/09/17/Gulp入门教程 )

    前言 最近流行前端构建工具,苦于之前使用Grunt,代码很难阅读,现在出了Gulp,真是摆脱了痛苦.发现了一篇很好的Gulp英文教程,整理翻译给大家看看. 为什么使用Gulp Gulp基于Node.j ...

  5. git回退文件修改

    假设git仓库某个文件的提交信息如下: [cxy@localhost-live mate-power-manager]$ git log -n3 SPECS/mate-power-manager.sp ...

  6. CH6901 骑士放置

    原题链接 和棋盘覆盖(题解)差不多.. 同样对格子染色,显然日字的对角格子是不同色,直接在对应节点连边,然后就是二分图最大独立集问题. #include<cstdio> #include& ...

  7. JVM 系列(二)内存模型

    02 JVM 系列(二)内存模型 一.JVM 内存区域 JVM 会将 Java 进程所管理的内存划分为若干不同的数据区域.这些区域有各自的用途.创建/销毁时间: 一. 线程私有区域 线程私有数据区域生 ...

  8. PDF下载网

    http://www.java1234.com/a/javabook/javaweb/2018/1103/12297.html

  9. JS原型与原型链

    1.原型(公用属性) 首先,我们来讲讲浏览器的初始状态,就是在无代码的情况下,浏览器所分配到的内存的使用情况,首先浏览器会创建一个全局对象global,而在这个全局对象global内含有许多的全局函数 ...

  10. unity luaFramework

    1 AppConst: DebugMode: 调试模式,true:lua脚本直接读取自 AssetDir,false:开始会将AssetDir内的lua脚本复制到 Util.DataPath内(根据平 ...