A1486. 树(王康宁)

时间限制:1.0s   内存限制:512.0MB  
总提交次数:455   AC次数:97   平均分:52.62

试题来源
  2013中国国家集训队第二次作业
问题描述
  给出一棵N个点的树,每个点有各自的权值,小A想选出一条简单路径,使得这条路径上的点的权值的异或和最大。另外,小A有一些喜欢的点,他希望在这条路径上经过至少K个自己喜欢的点。
输入格式
  第一行包括两个整数N, K,分别表示树的点数和路径上至少包含的小A喜欢的点的数量。
  接下来一行N个整数,每个数均为0或1,小A喜欢第i个点当且仅当这一行的第i个数是1。
  接下来一行N个整数V1, V2, …, VN,其中第i个数表示第i个点的权值。
  最后N-1行,每行两个整数u, v,表示树的一条边。
输出格式
  如果不存在这样的简单路径,输出-1。否则输出最大的异或和。
样例输入
3 1
1 1 1
0 4 7
1 2
2 3
样例输出
7
样例输入
3 2
1 0 1
3 5 6
1 2
2 3
样例输出
0
样例输入
4 4
1 1 1 1
10 10 10 10
1 2
1 3
1 4
样例输出
-1
数据规模和约定
测试点标号 N的范围 K的范围 Vi的范围 其它特点
1 N=2 K=0
2 N≤10
3 N≤1000 这棵树是一条链
4 N≤1000 K=0 这棵树是一条链
5 N≤4000
6 N≤30000 K=0 Vi≤7
7 N≤40000 K=0
8 N≤40000 K=0
9 N≤50000 K=0 这棵树是一条链
10 N≤50000 K=0
11 N≤60000 Vi≤7
12 N≤60000 这棵树是一条链
13 N≤70000 Vi≤107
14 N≤70000 Vi≤107
15 N≤80000
16 N≤80000
17 N≤90000
18 N≤90000
19 N≤100000
20 N≤100000

  对于100%的数据,1≤N≤100000, 0≤K≤N, 0≤Vi≤109, 保证输入的是一棵合法的树.

Solution

这道题,先考虑弱化版本..

如果$K=0$不考虑经过关键点的数量,非常简单。

可以直接从根dfs一遍得到到所有节点的xor和,然后全部插入Trie中,再枚举每个点贪心在Trie上跑即可,复杂度$O(NlogN)$。

但是这个题需要限制经过节点数,就必须点分治+Trie贪心,时间复杂度$O(Nlog^{2}N)$。

最普通的想法就是对于经过不同的关键点的路径xor和分别建一棵Trie树,然后查询的时候查询即可,但是$K$上限过大。

所以考虑维护一棵Trie树,在每个节点上维护一下经过的关键点数,在贪心统计答案的时候处理一下即可。

这里有一个问题,就是处理一棵子树的时候,最顶部的节点会重复计算,所以可以考虑先不计算它的影响,在统计答案的时候再计算回来。

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
}
#define MAXN 100010 int N,K,lov[MAXN],c[MAXN],ans=-1; struct EdgeNode{
int next,to;
}edge[MAXN<<1];
int head[MAXN],cnt=1;
inline void AddEdge(int u,int v) {cnt++; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].to=v;}
inline void InsertEdge(int u,int v) {AddEdge(u,v); AddEdge(v,u);} namespace Trie{
int son[MAXN][2],sz,d[MAXN];
int s[32];
inline void Calc(int x) {memset(s,0,sizeof(s)); for (int t=31; t>=0; t--) s[t]=(x>>t)&1;}
inline void Clear() {son[1][0]=son[1][1]=0; sz=1;}
inline void Insert(int x,int dep)
{
int now=1;
Calc(x);
for (int i=31; i>=0; i--)
if (son[now][s[i]]) now=son[now][s[i]],d[now]=max(d[now],dep);
else son[now][s[i]]=++sz,now=sz,son[now][1]=son[now][0]=0,d[now]=dep;
}
inline int Query(int x,int dep)
{
int now=1,mx=0;
Calc(x);
for (int i=31; i>=0; i--) {
if (son[now][s[i]^1] && d[son[now][s[i]^1]]>=dep) now=son[now][s[i]^1],mx|=(1<<i);
else if (son[now][s[i]] && d[son[now][s[i]]]>=dep) now=son[now][s[i]];
else return -1;
}
return mx;
}
}using namespace Trie; namespace TreeDivide{
int size[MAXN],mx[MAXN],Sz,root;
bool visit[MAXN];
struct Node{
int x,y;
Node (int X=0,int Y=0) {x=X,y=Y;}
}stack[MAXN];
int top;
inline void Getroot(int now,int last)
{
size[now]=1,mx[now]=0;
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=last && !visit[edge[i].to]) {
Getroot(edge[i].to,now);
size[now]+=size[edge[i].to];
mx[now]=max(mx[now],size[edge[i].to]);
}
mx[now]=max(mx[now],Sz-size[now]);
if (mx[now]<mx[root]) root=now;
}
inline void DFS(int now,int last,int dep,int val,int fav)
{
ans=max(ans,Query(val^fav,K-dep));
stack[++top]=Node(val,dep);
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=last && !visit[edge[i].to]) {
DFS(edge[i].to,now,dep+lov[edge[i].to],val^c[edge[i].to],fav);
}
}
inline void Divide(int now)
{
// printf("root=%d\n",now);
visit[now]=1;
Trie::Clear();
K-=lov[now];
if (K<=0) ans=max(ans,c[now]);
for (int i=head[now]; i; i=edge[i].next)
if (!visit[edge[i].to]) {
top=0;
DFS(edge[i].to,now,lov[edge[i].to],c[edge[i].to],c[now]);
for (int j=1; j<=top; j++)
Trie::Insert(stack[j].x,stack[j].y);
}
K+=lov[now];
for (int i=head[now]; i; i=edge[i].next)
if (!visit[edge[i].to]) {
root=0;
Sz=size[edge[i].to];
Getroot(edge[i].to,now);
Divide(root);
}
}
}using namespace TreeDivide; int main()
{
N=read(),K=read();
for (int i=1; i<=N; i++) lov[i]=read();
for (int i=1; i<=N; i++) c[i]=read();
for (int i=1,x,y; i<=N-1; i++) x=read(),y=read(),InsertEdge(x,y);
mx[root=0]=Sz=N;
Getroot(1,0);
Divide(root);
printf("%d\n",ans);
return 0;
}

【Tsinsen-A1486】树(王康宁) 点分治 + Trie的更多相关文章

  1. Tsinsen A1486. 树(王康宁)

    Description 一棵树,问至少有 \(k\) 个黑点的路径最大异或和. Sol 点分治. 用点分治找重心控制树高就不说了,主要是对答案的统计的地方. 将所有路径按点的个数排序. 可以发现当左端 ...

  2. 【BZOJ4016】[FJOI2014]最短路径树问题(点分治,最短路)

    [BZOJ4016][FJOI2014]最短路径树问题(点分治,最短路) 题面 BZOJ 洛谷 题解 首先把最短路径树给构建出来,然后直接点分治就行了. 这个东西似乎也可以长链剖分,然而没有必要. # ...

  3. A1486. 树(王康宁)

    题目:http://www.tsinsen.com/A1486 题解: 其实看到和路径有关的就应该想到点分治. 我们找出重心之后遍历每一棵子树得到它的 { x=经过特殊点的个数,y=到rt的异或和} ...

  4. 【xsy1122】 路径 点分治+trie

    题目大意:给你一棵n个点的树,树边上有边权,对于每一个点,你要求出经过该点的所有的路径中,路径异或和最大的值. 数据范围:$n≤10^5$,边权$≤10^9$. 我们考虑枚举每一条路径,显然这个是会T ...

  5. Tsinsen A1493 城市规划(DP + CDQ分治 + NTT)

    题目 Source http://www.tsinsen.com/A1493 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在 ...

  6. 【BZOJ-3648】寝室管理 环套树 + 树状数组 + 点分治

    3648: 寝室管理 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 239  Solved: 106[Submit][Status][Discuss] ...

  7. 【BZOJ-2229】最小割 最小割树(最大流+分治)

    2229: [Zjoi2011]最小割 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1565  Solved: 560[Submit][Status ...

  8. Tsinsen A1505. 树(张闻涛) 倍增LCA,可持久化线段树,DFS序

    题目:http://www.tsinsen.com/A1505 A1505. 树(张闻涛) 时间限制:1.0s   内存限制:512.0MB    总提交次数:196   AC次数:65   平均分: ...

  9. Codeforces 888G(分治+trie)

    按位贪心,以当前考虑位是0还是1将数分成两部分,则MST中这两部分之间只会存在一条边,因为一旦有两条或以上的边,考虑两条边在原图中所成的环,显然这两条边有一条是环上的权值最大边,不会出现在MST中.则 ...

随机推荐

  1. bzoj千题计划241:bzoj3864: Hero meet devil

    http://www.lydsy.com/JudgeOnline/problem.php?id=3864 题意: 给你一个DNA序列,求有多少个长度为m的DNA序列和给定序列的LCS为0,1,2... ...

  2. 转---一文读懂 python 的元类

    译注:这是一篇在Stack overflow上很热的帖子.提问者自称已经掌握了有关Python OOP编程中的各种概念,但始终觉得元类(metaclass)难以理解.他知道这肯定和自省有关,但仍然觉得 ...

  3. mybatis 不整合spring 入门小例子

    先上一个搭建完的项目结构截图: 相对比较重要的配置文件有 db.properties , SqlMappingConfig.xml , mapper/User.xml , log4j.properti ...

  4. TED_Topic8:How to control someone else's arm with your brain

    By Greg Gage (Neuroscientist) Greg Gage is on a mission to make brain science accessible to all. In ...

  5. java Runnable、Callable、FutureTask 和线程池

    一:Runnable.Callable.FutureTask简介 (1)Runnable:其中的run()方法没有返回值. ①.Runnable对象可以直接扔给Thread创建线程实例,并且创建的线程 ...

  6. 求矩形的周长(线段树+扫描线) Picture POJ - 1177

    题目链接:https://cn.vjudge.net/problem/POJ-1177 题目大意:求矩形外部的周长 具体思路:借用一下bin巨的一张图片. 我们按照y周从下往上的扫描线进行扫描,第一下 ...

  7. mybatis开发dao的方法——(三)

    ------------------------1.    SqlSession使用范围------------------- 1.1     SqlSessionFactoryBuilder 通过S ...

  8. python3 操作appium

    # -*- coding: utf-8 -*- # @Time : 2018/10/8 11:00 # @Author : cxa # @File : test.py # @Software: PyC ...

  9. 交换机NTP的MD5配置

    1.ntp-service authentication enable  开启NTP身份验证功能 2.ntp-service source-interfer LoopBack0 指定本机发生NTP的端 ...

  10. Coursera台大机器学习技法课程笔记08-Adaptive Boosting

    将分类器组合的过程中,将重点逐渐聚焦于那些被错分的样本点,这种做法背后的数学原因,就是这讲的内容. 在用bootstraping生成g的过程中,由于抽样对不同的g就生成了不同的u,接下来就是不断的调整 ...