#6004. 「网络流 24 题」圆桌聚餐

内存限制:256 MiB时间限制:5000 ms标准输入输出
题目类型:传统评测方式:Special Judge
上传者: 匿名

题目描述

假设有来自 n nn 个不同单位的代表参加一次国际会议。每个单位的代表数分别为 ri r_ir​i​​。会议餐厅共有 m mm 张餐桌,每张餐桌可容纳 ci c_ic​i​​ 个代表就餐。
为了使代表们充分交流,希望从同一个单位来的代表不在同一个餐桌就餐。

试设计一个算法,给出满足要求的代表就餐方案。

输入格式

文件第 1 11 行有 2 22 个正整数 m mm 和 n nn,m mm 表示单位数,n nn 表示餐桌数。
文件第 2 22 行有 m mm 个正整数,分别表示每个单位的代表数。
文件第 3 33 行有 n nn 个正整数,分别表示每个餐桌的容量。

输出格式

如果问题有解,在文件第 1 11 行输出 1 11,否则输出 0 00。
接下来的 m mm 行给出每个单位代表的就餐桌号。如果有多个满足要求的方案,只要输出一个方案。

样例

样例输入

4 5
4 5 3 5
3 5 2 6 4

样例输出

1
1 2 4 5
1 2 3 4 5
2 4 5
1 2 3 4 5

数据范围与提示

1≤m≤150,1≤n≤270 1 \leq m \leq 150, 1 \leq n \leq 2701≤m≤150,1≤n≤270

题目链接:https://loj.ac/problem/6004

思路:最大流板子题

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
#define PI acos(-1.0)
const int maxn=,maxm=1e5+,inf=0x3f3f3f3f,mod=1e9+;
const ll INF=1e18+;
struct edge
{
int from,to,cap,flow;
};
vector<edge>es;
vector<int>G[maxn];
bool vis[maxn];
int dist[maxn];
int iter[maxn];
void init(int n)
{
for(int i=; i<=n+; i++) G[i].clear();
es.clear();
}
void addedge(int from,int to,int cap)
{
es.push_back((edge)
{
from,to,cap,
});
es.push_back((edge)
{
to,from,,
});
int x=es.size();
G[from].push_back(x-);
G[to].push_back(x-);
}
bool BFS(int s,int t)
{
memset(vis,,sizeof(vis));
queue <int> Q;
vis[s]=;
dist[s]=;
Q.push(s);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for (int i=; i<G[u].size(); i++)
{
edge &e=es[G[u][i]];
if (!vis[e.to]&&e.cap>e.flow)
{
vis[e.to]=;
dist[e.to]=dist[u]+;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int u,int t,int f)
{
if(u==t||f==) return f;
int flow=,d;
for(int &i=iter[u]; i<G[u].size(); i++)
{
edge &e=es[G[u][i]];
if(dist[u]+==dist[e.to]&&(d=DFS(e.to,t,min(f,e.cap-e.flow)))>)
{
e.flow+=d;
es[G[u][i]^].flow-=d;
flow+=d;
f-=d;
if (f==) break;
}
}
return flow;
}
int Maxflow(int s,int t)
{
int flow=;
while(BFS(s,t))
{
memset(iter,,sizeof(iter));
int d=;
while(d=DFS(s,t,inf)) flow+=d;
}
return flow;
}
int a[maxn],b[maxn];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
int s=,t=n+m+;
init(n+m+);
int sum=;
for(int i=; i<=n; i++)
{
for(int j=; j<=m; j++)
addedge(i,j+n,);
}
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
sum+=a[i];
addedge(s,i,a[i]);
}
for(int i=; i<=m; i++)
{
scanf("%d",&b[i]);
addedge(i+n,t,b[i]);
}
if(Maxflow(s,t)<sum) printf("0\n");
else
{
printf("1\n");
for(int i=; i<n*m*; i+=)
{
if(es[i].flow>) printf("%d ",es[i].to-n);
if(es[i].to-n==m) printf("\n");
}
}
return ;
}

最大流版子题

LibreOJ 6004. 「网络流 24 题」圆桌聚餐 网络流版子题的更多相关文章

  1. Libre 6004 「网络流 24 题」圆桌聚餐(网络流,最大流)

    Libre 6004 「网络流 24 题」圆桌聚餐(网络流,最大流) Description 假设有来自n个不同单位的代表参加一次国际会议.每个单位的代表数分别为 ri.会议餐厅共有m张餐桌,每张餐桌 ...

  2. 【刷题】LOJ 6004 「网络流 24 题」圆桌聚餐

    题目描述 假设有来自 \(n\) 个不同单位的代表参加一次国际会议.每个单位的代表数分别为 \(r_i\) .会议餐厅共有 \(m\) 张餐桌,每张餐桌可容纳 \(c_i\)​​ 个代表就餐. 为了使 ...

  3. [cogs729] [网络流24题#5] 圆桌聚餐 [网络流,最大流,多重二分图匹配]

    建图:从源点向单位连边,边权为单位人数,从单位向圆桌连边,边权为1,从圆桌向汇点连边,边权为圆桌容量. #include <iostream> #include <algorithm ...

  4. LibreOJ #6212. 「美团 CodeM 决赛」melon

    二次联通门 : LibreOJ #6212. 「美团 CodeM 决赛」melon /* LibreOJ #6212. 「美团 CodeM 决赛」melon MDZZ 这是决赛题?? */ #incl ...

  5. Libre 6012 「网络流 24 题」分配问题 (网络流,费用流)

    Libre 6012 「网络流 24 题」分配问题 (网络流,费用流) Description 有n件工作要分配给n个人做.第i个人做第j件工作产生的效益为\(c_{ij}\).试设计一个将n件工作分 ...

  6. Libre 6011 「网络流 24 题」运输问题 (网络流,最小费用最大流)

    Libre 6011 「网络流 24 题」运输问题 (网络流,最小费用最大流) Description W 公司有m个仓库和n个零售商店.第i个仓库有\(a_i\)个单位的货物:第j个零售商店需要\( ...

  7. LibreOJ #6191. 「美团 CodeM 复赛」配对游戏

    二次联通门 : LibreOJ #6191. 「美团 CodeM 复赛」配对游戏 /* LibreOJ #6191. 「美团 CodeM 复赛」配对游戏 概率dp */ #include <cs ...

  8. liberOJ#6006. 「网络流 24 题」试题库 网络流, 输出方案

    #6006. 「网络流 24 题」试题库     题目描述 假设一个试题库中有 n nn 道试题.每道试题都标明了所属类别.同一道题可能有多个类别属性.现要从题库中抽取 m mm 道题组成试卷.并要求 ...

  9. LibreOJ #6192. 「美团 CodeM 复赛」城市网络

    #6192. 「美团 CodeM 复赛」城市网络 内存限制:64 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: sqc 提交提交记录统计讨论测试数据   题目描 ...

随机推荐

  1. js身份证掩饰成**(class循环处理)

    $('.shijian').each(function (i){ value=$(this).attr('data');value1=value.replace(/^(.{3})(?:\d+)(.{4 ...

  2. JDBC的基本概念

    英文名:Java DataBase Connectivity 中文名:数据库连接 作用: java操作数据库 本质上(sun公司的程序员)定义的一套操作关系型数据库的规则也就是接口,各数据库厂商实现接 ...

  3. JSF web.xml的各类参数属性配置

    出处:http://www.cnblogs.com/zxpgo/articles/2570175.html 感谢作者的分享!! ———————————————————————————————————— ...

  4. Android设置ScrollView回到顶部的三种方式 (转)

    一.ScrollView.scrollTo(0,0)  直接置顶,瞬间回到顶部,没有滚动过程,其中Y值可以设置为大于0的值,使Scrollview停在指定位置; 二.ScrollView.fullSc ...

  5. java面试技巧

    简历 1.HR看简历,都是看技术关键词.可以多看招聘要求,简历上要多写些关键词.比如io,集合,多线程,并发,spring,mysql,分布式等等. 2.可以准备多份简历,根据不同的jd发送不同的简历 ...

  6. Leetcode:LRU Cache,LFU Cache

    在Leetcode上遇到了两个有趣的题目,分别是利用LRU和LFU算法实现两个缓存.缓存支持和字典一样的get和put操作,且要求两个操作的时间复杂度均为O(1). 首先说一下如何在O(1)时间复杂度 ...

  7. poj2635(千进制取模+同余模定理)

    题目链接:https://www.cnblogs.com/kuangbin/archive/2012/04/01/2429463.html 题意:给出大数s (s<=10100) ,L (< ...

  8. 安装python3 及virtual与virtualenvwrapper

    安装python3 下载python源码包 网址:https://www.python.org/downloads/release/python-362/ 下载地址:https://www.pytho ...

  9. springboot找不到主类

    在学习springboot的时候,前几天写了一个demo,正常运行,一点问题也没有.今天运行不起来了. 报错:找不到主类 解决方案: Project->Clean->选中项目,点击Clea ...

  10. Javascript 强制浏览器渲染Dom文档

    在Cordova+Framework7开发Hybrid App时,在iPhone 7上遇到一个诡异的现象(Chrome浏览器.Android都正常):js修改手风琴中的input文本框的值后,但页面仍 ...