前言

在分布式系统中,常常需要使用缓存,而且通常是集群,访问缓存和添加缓存都需要一个 hash 算法来寻找到合适的 Cache 节点。但,通常不是用取余hash,而是使用我们今天的主角—— 一致性 hash 算法。

今天楼主就来说说这个一致性 hash 算法。

1. 为什么普通的 hash 算法不行?

普通的 hash 算法通常都是对机器数量进行取余,比如集群环境中有 3 台 redis,当我们放入对象的时候,通常是对 3 进行取余。这种做法在大部分情况下是没有问题的。但是,注意:如果缓存机器需要增减,问题就来了。

什么问题呢?

假设原本是 3 个 redis,这时候,加了一台 redis,那么取余算法就变成了取余 4。

这样有什么问题呢?
答:当使用负载均衡的时候,负载均衡器根据对象的 key 对机器进行取余,这个时候,原有的 key 取余现有的机器数 4 就找不到那台机器了!笨一点的办法,就是在增加机器的时候,清除所有缓存,但这会导致缓存击穿甚至缓存雪崩,严重情况下引发 DB 宕机。

2. 一致性 hash 怎么解决这个问题?

很简单,既然问题出在对机器取余上,那么就不对机器取余。

具体怎么做呢?

答:我们可以假设有一个 2 的 32 次方的环形,缓存节点通过 hash 落在环上。而对象的添加也是使用 hash,但很大的几率是 hash 不到缓存节点的。怎么办呢?找离他最近的那个节点。 比如顺时针找前面那个节点。

能解决问题吗?想象一下:当增减机器时,环形节点变化的只会影响一个节点,就是新节点的顺时针方向的前面的节点。这个时候,我们只需要清除那一个节点的数据就足够了,不用想取余 hash 那样,清除所有节点的数据。

具体类似于下图:

上图中,节点中的五角星代表对象,红绿黄代表节点,每个对象都会找他的上一个节点。如有增减,只影响一个节点。

如下图所示:

红色和绿色节点不受影响。

3. 一致性 hash 有什么问题呢?

是否这么做就完美了呢?

不是的。

如果认真看是上面的图的话,会发现,黄色节点的负载压力最大,这个集群环境负载不够均衡。

什么原因导致的呢?原因是:如果缓存节点分布不均匀,就会出现这样的情况。但是,你不能奢望是均匀的。

怎么办呢?

我们可以在不均的地方给他弄均匀。在空闲的地方加入 虚拟节点,这些节点的数据映射到真实节点上,就可以了,如下图所示:

上图中,我们给每个节点都做了虚拟节点(虚线),从而让整个集群在 hash 环比较均匀,从图中也可以看出,这样现对比之前均匀多了,黄色节点的负载和绿色节点额的负载相同。

4. 总结

总的来说,一致性 hash 还是比较简单的。核心思想是,不使用对机器取余的算法。这样就能避免机器增减带来的影响。

同时,使用 就近寻址 的方式找到最近的节点。当然,这会引起负载不均衡,所以需要引入虚拟节点的方式,变相的增加节点,让整个集群的负载能够均衡。

后面,我们将自己写一个一致性 hash 算法以加深印象。

good luck!!!!

分布式理论(八)—— Consistent Hash(一致性哈希算法)的更多相关文章

  1. consistent hash(一致性哈希算法)

    一.产生背景 今天咱不去长篇大论特别详细地讲解consistent hash,我争取用最轻松的方式告诉你consistent hash算法是什么,如果需要深入,Google一下~. 举个栗子吧: 比如 ...

  2. hash环/consistent hashing一致性哈希算法

        一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的 ...

  3. 分布式_理论_08_Consistent Hash(一致性哈希算法)

    一.前言 五.参考资料 1.分布式理论(八)—— Consistent Hash(一致性哈希算法)

  4. 一致性哈希算法(consistent hashing)(转)

    原文链接:每天进步一点点——五分钟理解一致性哈希算法(consistent hashing)  一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网 ...

  5. 一致性哈希算法学习及JAVA代码实现分析

    1,对于待存储的海量数据,如何将它们分配到各个机器中去?---数据分片与路由 当数据量很大时,通过改善单机硬件资源的纵向扩充方式来存储数据变得越来越不适用,而通过增加机器数目来获得水平横向扩展的方式则 ...

  6. _00013 一致性哈希算法 Consistent Hashing 新的讨论,并出现相应的解决

    笔者博文:妳那伊抹微笑 博客地址:http://blog.csdn.net/u012185296 个性签名:世界上最遥远的距离不是天涯,也不是海角,而是我站在妳的面前.妳却感觉不到我的存在 技术方向: ...

  7. 一致性哈希算法(Consistent Hashing Algorithm)

    一致性哈希算法(Consistent Hashing Algorithm) 浅谈一致性Hash原理及应用   在讲一致性Hash之前我们先来讨论一个问题. 问题:现在有亿级用户,每日产生千万级订单,如 ...

  8. 一致性哈希算法(Consistent Hashing) .

    应用场景 这里我先描述一个极其简单的业务场景:用4台Cache服务器缓存所有Object. 那么我将如何把一个Object映射至对应的Cache服务器呢?最简单的方法设置缓存规则:object.has ...

  9. 转 白话解析:一致性哈希算法 consistent hashing

    摘要: 本文首先以一个经典的分布式缓存的应用场景为铺垫,在了解了这个应用场景之后,生动而又不失风趣地介绍了一致性哈希算法,同时也明确给出了一致性哈希算法的优点.存在的问题及其解决办法. 声明与致谢: ...

随机推荐

  1. deeplearning 源码收集

    Theano – CPU/GPU symbolic expression compiler in python (from MILA lab at University of Montreal) To ...

  2. WordPress建站指南(1)

    写在前面: 3月份用10天零碎时间火速完成了建站,后台95%的工作都交给了WP(WordPress).如果想偷懒的话,WP是一个绝好的选择,估计有个小半天就建完收工了. 想有片自己的小花园,可是不会P ...

  3. 静态工厂 + DbHelper

    在 .NET 的学习过程中用过三种数据库:Sql Server.Access.SQLite.Sql Server 用得相对多一点点,但是,麻烦,每次用它都需要开服务,而且还费资源,更麻烦的是拷贝到一台 ...

  4. AngularJs创建自定义Service

    AngularJs可以创建自定义的service.下面的自定义service实现一个double倍数的服务: 参考下面语法: app.service('double', function () { t ...

  5. 【转】selenium webdriver三种等待方法

    原文:https://www.cnblogs.com/lgh344902118/p/6015593.html webdriver三种等待方法 1.使用WebDriverWait from seleni ...

  6. Loop List

    Loop List is very common in interview. This article we give a more strict short statement about its ...

  7. @transactional注解,报错后数据库操作回滚失败

    1. https://jingyan.baidu.com/article/3a2f7c2e27d51b26afd611ff.html 2. https://blog.csdn.net/lee_star ...

  8. python socket 编程简单入门

    想讲讲套接字的概念 套接字,即英文socket的中文意译,起源于20世纪70年代,是加利福利亚大学的伯克利版本UNIX(称为BSD UNIX)的一部分.目的是实现主机上运行的一个程序与另一个运行的程序 ...

  9. 关于c++类的一些知识的总结

    1.经常会听到“类的声明.类的定义.类的实现”,它们之间有什么不一样? 经过查阅https://www.cnblogs.com/kkshaq/p/4660073.html博客的说法,类的声明是在.h文 ...

  10. KVM的VPS主机在Centos6.x下修改系统时间

    显示系统时间 # date "+%Y-%m-%d %H:%M:%S" 修改系统时区 # cp /usr/share/zoneinfo/Asia/Shanghai /etc/loca ...