写的话就是排列组合。。。但能化简。。。ΣC(n,i)*C(i,1) 化简为n*2^(n-1) ;

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 1000000007
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
LL down[maxn], up[maxn]; LL qpow(LL a, LL b)
{
LL res = ;
while(b)
{
if(b & ) res = res * a % MOD;
a = a * a % MOD;
b >>= ;
}
return res;
}
//
//void init()
//{
// up[0] = 1;
// down[0] = 1;
// for(int i=1; i<maxn; i++)
// {
// up[i] = up[i-1] * i % MOD;
// down[i] = qpow(up[i], MOD - 2);
// }
//}
//
//LL C(LL n, LL m)
//{
// return up[n] * down[m] % MOD * down[n-m] % MOD;
//} int main()
{
int T, kase = ;
// init();
cin>> T;
while(T--)
{
LL n, res = , m;
cin>> n; printf("Case #%d: %lld\n",++kase, n * qpow(, n-) % MOD); // cout<< C(n, m) <<endl; } return ;
}

Teams UVA - 11609(快速幂板题)的更多相关文章

  1. luoguP3390(矩阵快速幂模板题)

    链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...

  2. UVA 11609 - Teams 组合、快速幂取模

    看题传送门 题目大意: 有n个人,选一个或者多个人参加比赛,其中一名当队长,如果参赛者相同,队长不同,也算一种方案.求一共有多少种方案. 思路: 排列组合问题. 先选队长有C(n , 1)种 然后从n ...

  3. Educational Codeforces Round 13——D. Iterated Linear Function(矩阵快速幂或普通快速幂水题)

      D. Iterated Linear Function time limit per test 1 second memory limit per test 256 megabytes input ...

  4. HDU 1575 矩阵快速幂裸题

    题意:中文题 我就不说了吧,... 思路:矩阵快速幂 // by SiriusRen #include <cstdio> #include <cstring> using na ...

  5. POJ3070矩阵快速幂简单题

    题意:       求斐波那契后四位,n <= 1,000,000,000. 思路:        简单矩阵快速幂,好久没刷矩阵题了,先找个最简单的练练手,总结下矩阵推理过程,其实比较简单,关键 ...

  6. CodeForces 450B (矩阵快速幂模板题+负数取模)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N ...

  7. UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!

    题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...

  8. POJ_Fibonacci POJ_3070(矩阵快速幂入门题,附上自己写的矩阵模板)

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10521   Accepted: 7477 Descri ...

  9. Final Destination II -- 矩阵快速幂模板题

    求f[n]=f[n-1]+f[n-2]+f[n-3] 我们知道 f[n] f[n-1] f[n-2]         f[n-1]  f[n-2]  f[n-3]         1    1    ...

随机推荐

  1. 第16章 STM32中断应用概览

    第16章     STM32中断应用概览 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com/fi ...

  2. Jupyter Notebook中让python2和python3内核共存

    自己计算机里面共存了Python2和Python3,ipython作为试探性的REPL解释器使用的频率还是挺高的,分别在2和3下安装完ipython notebook后怎么分别使用这两种内核呢 按照默 ...

  3. 2PC AND 3PC

    一.分布式数据一致性 在分布式系统中,为了保证数据的高可用,通常会将数据保留多个副本(replica),这些副本会放置在不同的物理的机器上. (1)什么是数据一致性 在数据有多份副本的情况下,如果网络 ...

  4. 20155323刘威良《网络对抗》Exp8 Web基础

    20155323刘威良<网络对抗>Exp8 Web基础 实践内容 (1).Web前端HTML(0.5分) 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编 ...

  5. # 20155337《网络对抗》Web基础

    20155337<网络对抗>Exp8 Web基础 实践目标 1. 实践内容 (1).Web前端HTML 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写 ...

  6. EZ 2018 04 21 NOIP2018 模拟赛(九)

    终于停止了掉Rating的浪潮! 猥琐的链接 这次200分才Rank10,而且很多人并列 庆幸T2最后20分钟发现期望的算法打错了,然后拿到了50pts,250收场 T1 水题*1 这道题不仅做过,而 ...

  7. VS与Opencv的亲密接触之安装配置过程

    最近想把FPGA采集的图像,上传到上位机显示,看到Opencv能帮大忙,所以就折腾折腾! 我用的是VS2012和opencv-2.4.10-2.4.10(目前的最新版本),那个版本无所谓,本文都将适用 ...

  8. python 回溯法 子集树模板 系列 —— 10、m着色问题

    问题 图的m-着色判定问题 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色? 图的m-着色优化问题 若一个图最少 ...

  9. 【SP1812】LCS2 - Longest Common Substring II

    [SP1812]LCS2 - Longest Common Substring II 题面 洛谷 题解 你首先得会做这题. 然后就其实就很简单了, 你在每一个状态\(i\)打一个标记\(f[i]\)表 ...

  10. 【ORACLE】oracle打补丁

    -- 备份旧的opatch cd $ORACLE_HOME/ mv OPatch  OPatch_20180323_old -- 上传补丁工具和补丁包到oraclehome目录下,解压 unzip p ...