写的话就是排列组合。。。但能化简。。。ΣC(n,i)*C(i,1) 化简为n*2^(n-1) ;

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 1000000007
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff;
LL down[maxn], up[maxn]; LL qpow(LL a, LL b)
{
LL res = ;
while(b)
{
if(b & ) res = res * a % MOD;
a = a * a % MOD;
b >>= ;
}
return res;
}
//
//void init()
//{
// up[0] = 1;
// down[0] = 1;
// for(int i=1; i<maxn; i++)
// {
// up[i] = up[i-1] * i % MOD;
// down[i] = qpow(up[i], MOD - 2);
// }
//}
//
//LL C(LL n, LL m)
//{
// return up[n] * down[m] % MOD * down[n-m] % MOD;
//} int main()
{
int T, kase = ;
// init();
cin>> T;
while(T--)
{
LL n, res = , m;
cin>> n; printf("Case #%d: %lld\n",++kase, n * qpow(, n-) % MOD); // cout<< C(n, m) <<endl; } return ;
}

Teams UVA - 11609(快速幂板题)的更多相关文章

  1. luoguP3390(矩阵快速幂模板题)

    链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...

  2. UVA 11609 - Teams 组合、快速幂取模

    看题传送门 题目大意: 有n个人,选一个或者多个人参加比赛,其中一名当队长,如果参赛者相同,队长不同,也算一种方案.求一共有多少种方案. 思路: 排列组合问题. 先选队长有C(n , 1)种 然后从n ...

  3. Educational Codeforces Round 13——D. Iterated Linear Function(矩阵快速幂或普通快速幂水题)

      D. Iterated Linear Function time limit per test 1 second memory limit per test 256 megabytes input ...

  4. HDU 1575 矩阵快速幂裸题

    题意:中文题 我就不说了吧,... 思路:矩阵快速幂 // by SiriusRen #include <cstdio> #include <cstring> using na ...

  5. POJ3070矩阵快速幂简单题

    题意:       求斐波那契后四位,n <= 1,000,000,000. 思路:        简单矩阵快速幂,好久没刷矩阵题了,先找个最简单的练练手,总结下矩阵推理过程,其实比较简单,关键 ...

  6. CodeForces 450B (矩阵快速幂模板题+负数取模)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N ...

  7. UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!

    题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...

  8. POJ_Fibonacci POJ_3070(矩阵快速幂入门题,附上自己写的矩阵模板)

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10521   Accepted: 7477 Descri ...

  9. Final Destination II -- 矩阵快速幂模板题

    求f[n]=f[n-1]+f[n-2]+f[n-3] 我们知道 f[n] f[n-1] f[n-2]         f[n-1]  f[n-2]  f[n-3]         1    1    ...

随机推荐

  1. 解决Ubuntu14.04安装Chrome浏览器打不开的问题

    1.安装Chrome浏览器 wget http://www.linuxidc.com/files/repo/google-chrome.list -P /etc/apt/sources.list.d/ ...

  2. 20155330 《网络攻防》 Exp4 恶意代码分析

    20155330 <网络攻防> Exp4 恶意代码分析 实验后回答问题 (1)如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所有想监控下系统一天天的到底在干些什么.请设计下你想监控的操 ...

  3. 20155339 Exp7 网络欺诈防范

    20155339 Exp7 网络欺诈防范 .基础问题回答 (1)通常在什么场景下容易受到DNS spoof攻击 当连接局域网的时候应该最容易被攻击,比如说连接了一些不清楚是什么的WiFi其实是很容易收 ...

  4. Android开发——Android进程保活招式大全

    )前台进程(Foreground process),即用户当前操作所必需的进程,通常数量不多.举例如下: //拥有用户正在交互的 Activity(已调用 onResume()) //拥有某个 Ser ...

  5. OFS环境,删除Resource 时出现错误失败,应该如何继续

    From the Windows failover cluster manager,select the group listener, stop it, and delete it.  Do the ...

  6. js中的数据类型及判断方法

    ECMAScirpt 变量有两种不同的数据类型:基本类型,引用类型. 基本类型 ● Boolean ● Null ● Undefined ● Number ● String ● Symbol (ECM ...

  7. C#_IO操作

    1.创建文件夹 //using System.IO; Directory.CreateDirectory(%%1);   2.创建文件 //using System.IO; File.Create(% ...

  8. Windows10没有修改hosts文件权限的解决方案(亲测有效)

    当遇到有hosts文件不会编辑或者,修改了没办法保存”,以及需要权限等问题如图: 或者这样: 我学了一招,现在教给你: 1.win+R 2.进入hosts的文件所在目录: 3.我们开始如何操作才能不出 ...

  9. Jenkins+Maven+SVN+Nexus自动化部署代码实例

    本文接着上篇安装jenkins,安装相关插件,使用我们公司持续集成的测试环境实例进行演示 ========= 完美的分割线 ========== 1.安装jenkins的maven插件 如果要使用je ...

  10. muduo网络库学习笔记(三)TimerQueue定时器队列

    目录 muduo网络库学习笔记(三)TimerQueue定时器队列 Linux中的时间函数 timerfd简单使用介绍 timerfd示例 muduo中对timerfd的封装 TimerQueue的结 ...