[Usaco2012Jan]Bovine Alliance

Time Limit: 2 Sec Memory Limit: 128 MB

Description

Bessie and her bovine pals from nearby farms have finally decided that they are going to start connecting their farms together by trails in an effort to form an alliance against the farmers. The cows in each of the N (1 <= N <= 100,000) farms were initially instructed to build a trail to exactly one other farm, for a total of N trails. However months into the project only M (1 <= M < N) of these trails had actually been built. Arguments between the farms over which farms already built a trail now threaten to split apart the cow alliance. To ease tension, Bessie wishes to calculate how many ways the M trails that exist so far could have been built. For example, if there is a trail connecting farms 3 and 4, then one possibility is that farm 3 built the trail, and the other possibility is that farm 4 built the trail. Help Bessie by calculating the number of different assignments of trails to the farms that built them, modulo 1,000,000,007. Two assignments are considered different if there is at least one trail built by a different farm in each assignment.

给出n个点m条边的图,现把点和边分组,每条边只能和相邻两点之一分在一组,点可以单独一组,问分组方案数。

Input

  • Line 1: Two space-separated integers N and M

  • Lines 2..1+M: Line i+1 describes the ith trail. Each line contains two space-separated integers u_i and v_i (1 <= u_i, v_i <= N, u_i != v_i) describing the pair of farms connected by the trail. Note that there can be two trails between the same pair of farms.

Output

  • Line 1: A single line containing the number of assignments of trails to farms, taken modulo 1,000,000,007. If no assignment satisfies the above conditions output 0.

Sample Input

5 4

1 2

3 2

4 5

4 5

Sample Output

6

HINT

OUTPUT DETAILS: There are 6 possible assignments. Letting {a,b,c,d} mean that farm 1 builds trail a, farm 2 builds trail b, farm 3 builds trail c, and farm 4 builds trail d, the assignments are: {2, 3, 4, 5} {2, 3, 5, 4} {1, 3, 4, 5} {1, 3, 5, 4} {1, 2, 4, 5} {1, 2, 5, 4}

大概就是分情况讨论一下;
首先很多个联通块就用乘法原理就好了
每一个联通块中,如果边数 > 点数,那直接就凉了,对吧。
两个刚好相等的时候就是一个环,环可以顺带很多条链,但是只有一个中心环。。因为环可以正反转,所以是 2
如果是一颗树,你可以把那个倒霉的点找出来,因为一旦你决定了那个点没有边,你蝴蝶效应其他就都定下来了。。。所以贡献是点数
统计答案即可。。。

```c++

include<bits/stdc++.h>

using namespace std;

const int maxn = 1e5 + 5, mod = 1e9 + 7;

int n, m, fa[maxn], size[maxn], p[maxn];

set s;

set::iterator iter;

long long ans = 1;

inline int read()

{

int s = 0, w = 1; char ch = getchar();

while(ch <= '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}

while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar();

return s * w;

}

int find(int t){return fa[t] == t ? t : (fa[t] = find(fa[t]));}

int main()

{

n = read(); m = read();

for(int i = 1; i <= n; ++i) fa[i] = i, p[i] = 1;

for(int a, b, A, B, i = 1; i <= m; ++i){

a = read(); b = read();

A = find(a); B = find(b); size[A]++;

if(A == B) continue;

if(A > B) swap(A, B);

fa[B] = A; size[A] += size[B]; p[A] += p[B];

}

for(int i = 1; i <= n; ++i) s.insert(find(i));

for(iter = s.begin(); iter != s.end(); ++iter){

int now = *iter;

if(size[now] > p[now]){cout << 0; return 0;}

if(size[now] == p[now]) ans = ans * 2 % mod;

if(size[now] < p[now]) ans = ans * p[now] % mod;

}

cout << ans;

return 0;

}

bzoj2582 [Usaco2012Jan]Bovine Alliance的更多相关文章

  1. 洛谷P3043 [USACO12JAN]牛联盟Bovine Alliance

    P3043 [USACO12JAN]牛联盟Bovine Alliance 题目描述 Bessie and her bovine pals from nearby farms have finally ...

  2. P3043 [USACO12JAN]牛联盟Bovine Alliance(并查集)

    P3043 [USACO12JAN]牛联盟Bovine Alliance 题目描述 Bessie and her bovine pals from nearby farms have finally ...

  3. bzoj258 [USACO 2012 Jan Gold] Bovine Alliance【巧妙】

    传送门1:http://www.usaco.org/index.php?page=viewproblem2&cpid=111 传送门2:http://www.lydsy.com/JudgeOn ...

  4. P3043 [USACO12JAN]牛联盟Bovine Alliance——并查集

    题目描述 给出n个点m条边的图,现把点和边分组,每条边只能和相邻两点之一分在一组,点可以单独一组,问分组方案数. (友情提示:每个点只能分到一条边,中文翻译有问题,英文原版有这样一句:The cows ...

  5. [USACO12JAN]牛联盟Bovine Alliance

    传送门:https://www.luogu.org/problemnew/show/P3043 其实这道题十分简单..看到大佬们在用tarjan缩点,并查集合并.... 蒟蒻渣渣禹都不会. 渣渣禹发现 ...

  6. BZOJ-USACO被虐记

    bzoj上的usaco题目还是很好的(我被虐的很惨. 有必要总结整理一下. 1592: [Usaco2008 Feb]Making the Grade 路面修整 一开始没有想到离散化.然后离散化之后就 ...

  7. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  8. POJ - 2183 Bovine Math Geniuses

    “模拟“题,运用哈希,不断地按照一定运算规律对一个结果进行计算,如果重复出现就停止并且输出该数.注意到仔细看题,这种题一定要细心! POJ - 2183 Bovine Math Geniuses Ti ...

  9. POJ 3047 Bovine Birthday 日期定周求 泽勒公式

    标题来源:POJ 3047 Bovine Birthday 意甲冠军:.. . 思考:式 适合于1582年(中国明朝万历十年)10月15日之后的情形 公式 w = y + y/4 + c/4 - 2* ...

随机推荐

  1. rpm2cpio - 从 RPM 软件包中提取 cpio 归档

    SYNOPSIS rpm2cpio [filename] DESCRIPTION rpm2cpio 将指定的一个 .rpm 文件转换为一个 cpio 文档,输出到标准输出.如果给出了 `-' 参数,那 ...

  2. smbspool - 将一个打印文件发送到一台SMB打印机

    总览 SYNOPSIS smbspool {job} {user} {title} {copies} {options} [filename] 描述 DESCRIPTION 此程序是Samba(7)套 ...

  3. shell 函数传递参数的几种方式

    1.最近总结了 shell 中 function 的传递变量的几种方式 1.传递单个变量 2.传递数组变量   #!/bin/bash   #trying to pass an variable.   ...

  4. Python3.5-20190502-廖老师-自我笔记

    python的语法主要就是严格的缩进.一般缩进都是四个空格.以冒号结尾的(:)就意味着他后面有代码块.(js代码块使用{}抱起来的,我记得c语言也是,但是python就不需要,他只要严格缩进的就可以了 ...

  5. BZOJ3622 已经没有什么好害怕的了 二项式反演+DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3622 题解 首先显然如果 \(n - k\) 为奇数那么就是无解.否则的话,"糖果& ...

  6. Oracle RAC常用命令

    Oracle Clusterware的命令集可以分为以下4种,其中用的最多的是crsctl和srvctl:节点层:osnodes olsnodes -n -i -s olsnodes -l -p 网络 ...

  7. solr测试用的配置

    <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.spr ...

  8. vim编辑器的使用技巧——忽略字母大小写

    一忽略字母大小写临时生效 底行模式 底行模式下输入set  ic 注意ic是ignorecase的缩写 命令模式 命令模式进行关键字搜索 二忽略字母大小写永久生效 保存到配置文件里面,默认是没有此配置 ...

  9. python学习笔记(四)字符串及字符串操作

    字符串 字符串可以存任意类型的字符串,比如名字,一句话等等. 字符串还有很多内置方法,对字符串进行操作,常用的方法如下: name1='hello world' print(name.capitali ...

  10. [ZJOI2019]开关

    以下的方案数默认是带权方案数.设\(P=\sum_{i=1}^np_i\). 设\(F(x)\)为按\(i\)次开关后到达终止态的方案数的EGF,\(f\)为\(F\)的OGF,显然\(F(x)=\p ...