题目链接

昨天上随机信号分析讲马氏链的时候突然想到这题的解法,今天写一下

定义矩阵A,Ans=A^n,令A[i][j]表示,经过1次变换后,第i个位置上的机器人位于第j个位置的情况数,则Ans[i][j]表示最初在第i个位置上的机器人n次变换后位于第j个位置的情况数

最后求一下任意两个机器人不在相同位置的情况数之和(注意乘法原理和加法原理的应用)

#include<bits/stdc++.h>
using namespace std;
typedef long long LL; const int N=;
const LL mod=1e9+; LL hh[N][N]= {{,,,},
{,,,},
{,,,},
{,,,}
}; struct Mat
{
LL mat[N][N];
Mat()
{
memset(mat,,sizeof(mat));
}
LL* operator [](int x) //注意这种写法
{
return mat[x];
}
} A;
Mat Mut(Mat a,Mat b)
{
Mat c;
for(int k=; k<N; k++)
for(int i=; i<N; i++)
for(int j=; j<N; j++)
{
c[i][j]+=a[i][k]*b[k][j]%mod;
c[i][j]=c[i][j]%mod;
}
return c;
}
Mat Qpow(Mat a,LL n)
{
Mat c;
for(int i=; i<N; ++i)
c[i][i]=;
for(; n; n>>=)
{
if(n&) c=Mut(c,a);
a=Mut(a,a);
}
return c;
} void init_A()
{
for(int i=; i<N; i++)
for(int j=; j<N; j++)
A[i][j]=hh[i][j];
} int main()
{
LL n,Fn,Gn;
init_A();
while(cin>>n)
{
Mat Ans=Qpow(A,n);
LL sum=;
for(int i1=; i1<; i1++)
for(int i2=; i2<; i2++)
for(int i3=; i3<; i3++)
for(int i4=; i4<; i4++)
if(i1!=i2&&i1!=i3&&i1!=i4&&i2!=i3&&i2!=i4&&i3!=i4)
{
sum+=Ans[][i1]*Ans[][i2]%mod*Ans[][i3]%mod*Ans[][i4]%mod;
sum%=mod;
}
cout<<sum<<endl;
}
}

51nod 1122:机器人走方格 V4 (矩阵快速幂)的更多相关文章

  1. 51nod 1122 机器人走方格 V4 【矩阵快速幂】

    首先建立矩阵,给每个格子编号,然后在4*4的格子中把能一步走到的格子置为1,然后乘n次即可,这里要用到矩阵快速幂 #include<iostream> #include<cstdio ...

  2. 1122 机器人走方格 V4

    1122 机器人走方格 V4 基准时间限制:1 秒 空间限制:131072 KB  四个机器人a b c d,在2 * 2的方格里,一开始四个机器人分别站在4个格子上,每一步机器人可以往临近的一个格子 ...

  3. 51nod1122 机器人走方格 V4

    矩阵快速幂求出每个点走n步后到某个点的方案数.然后暴力枚举即可 #include<cstdio> #include<cstring> #include<cctype> ...

  4. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  5. 51nod 1119 机器人走方格 V2

    1119 机器人走方格 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少 ...

  6. 51nod 1120 机器人走方格V3

    1120 机器人走方格 V3  基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只 ...

  7. 51Nod 1118 机器人走方格--求逆元

    (x/y) %mod =x*(y^(mod-2))%mod; 在算x,y的时候可以一直mod 来缩小 y^(mod-2)显然是个快速幂 #include <iostream> #inclu ...

  8. 51nod_1122:机器人走方格 V4 (矩阵快速幂)

    题目链接 昨天上随机信号分析讲马氏链的时候突然想到这题的解法,今天写一下 定义矩阵A,Ans=A^n,令A[i][j]表示,经过1次变换后,第i个位置上的机器人位于第j个位置的情况数,则Ans[i][ ...

  9. 51Nod——N1118 机器人走方格

    https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1118 基准时间限制:1 秒 空间限制:131072 KB 分值: 0  ...

随机推荐

  1. php面向对象编程(oop)基础知识示例解释

    面向对象并不是一种技术,而是一种思想,是一种解决问题的最基本的思维方式!如何理解使用?OOP:面向对象编程 (直接代码说明) 1.面向对象的基本概念 示例demo: <?php header(& ...

  2. 我的Podfile如下

    # Uncomment this line to define a global platform for your projectuse_frameworks!(http://www.my516.c ...

  3. JQuery触发hover事件无效时使用js原生的触发事件方法

    需求:在开发一个从微信公众号后台管理网页上爬取数据的chrome插件时,有部分页面元素是只显示了部分摘要信息的,需要把鼠标移上去后才能显示全部信息(类似title的弹出显示).这就需要在chrome插 ...

  4. xiugai完了

    <!DOCTYPE html> <html lang="en"> <head> <meta http-equiv="Conten ...

  5. CAD到ArcGIS相关操作

    1.Ctrl+N(新建图形)→复制原数据,粘贴到原坐标 2.将CAD数据转为矢量数据方法众多,此处将提供三种方法: 方法一:CAD转地理数据库注记 在[ArcToolBox]窗口中,双击[转换工具]→ ...

  6. Jenkins使用二:新建任务

    准备一个用于测试脚本,就打印hello world 新建job 配置: 添加步骤 立即构建

  7. mybatis多对多

    这里我们以用户 user 表和 角色role 表为例,假定一个用户能被分配成多重角色,而一种角色也能分给多个用户,故用户和角色构成多对多的关系 需求:给定角色id,查询这个角色所属的所有用户信息 ①. ...

  8. HashMap之扰动函数和低位掩码

    我们都知道,hashMap在实现的时候,为了寻找在数组上的位置,主要做了两件事 int hash = hash(key); int i = indexFor(key, table.length); 这 ...

  9. vmware linux root密码破解

    centOS: 1.开机过程按上下箭头键,让系统不要进入到引导程序中, 2.按 'e' 进入到编辑模式 3.找到linux16开始的首行,在末尾加入'rw init=/bin/sh' (会出现修改密码 ...

  10. Numpy的基础使用

    数据分析: 是把隐藏在一些看似杂乱无章的数据背后的信息提取出来,总结出所研究对象的内在规律 数据分析的三剑客: Numpy, Pandas, Matplotlib NumPy(Numerical Py ...