Graph Neural Networks for Computer Vision

I was attracted by this image:

This is an inspiring image and it was posted in this article: Tutorial on Graph Neural Networks for Computer Vision and Beyond (Part 1) written by Boris, a PhD student at University of Guelph.
Link:
https://medium.com/@BorisAKnyazev/tutorial-on-graph-neural-networks-for-computer-vision-and-beyond-part-1-3d9fada3b80d

The figure I attached above is showing some possibilities that using the graph structure to represent the version components in a fuzzy way. That's innovative and interesting.

Graph Neural Networks for Computer Vision的更多相关文章

  1. 深度学习论文翻译解析(十七):MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    论文标题:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文作者:Andrew ...

  2. [论文阅读] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (MobileNet)

    论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 本文提出的模型叫Mobi ...

  3. 3D Graph Neural Networks for RGBD Semantic Segmentation

    3D Graph Neural Networks for RGBD Semantic Segmentation 原文章:https://www.yuque.com/lart/papers/wmu47a ...

  4. 论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)

    论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNet由Go ...

  5. 【论文翻译】MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文链接:https://arxi ...

  6. [论文理解] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

    MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications Intro MobileNet 我 ...

  7. 《Graph Neural Networks: A Review of Methods and Applications》阅读笔记

    本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习 ...

  8. 【论文阅读】Learning Dual Convolutional Neural Networks for Low-Level Vision

    论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低 ...

  9. 深度学习论文翻译解析(六):MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications

    论文标题:MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Appliications 论文作者:Andrew ...

随机推荐

  1. z-index的各种坑

    z-index属性 z-index : auto | number z-index 属性设置元素的堆叠顺序,如果为正数,则离用户更近,为负数则表示离用户更远: 拥有更高堆叠顺序的元素总是会处于堆叠顺序 ...

  2. ASP Loading

    ASP 页面加载等待效果.如 显示"请稍后页面正在加载...",加载完成后隐藏这个loading. <%Response.buffer=false%> <html ...

  3. Phaser 源码分析

    Phaser 一个可重用的同步屏障,功能上与 CyclicBarrier 和 CountDownLatch 类似,但是支持更灵活的使用. 把多个线程协作执行的任务划分为多个阶段,编程时需要明确各个阶段 ...

  4. AlertManager警报通知 E-mail 微信 模板

    # AlertManager警报通知 E-mail 微信 模板 #AlertManager配置 #alertmanager.yml # 全局配置项 global: resolve_timeout: 5 ...

  5. oracle 11g 数据库恢复技术 ---01 重做日志

    一 redo log Oracle数据库中的三大核心文件分别是数据文件(data file).重做日志(redo log)和控制文件(control file).数据文件保证了数据库的持久性,是保存修 ...

  6. Generative Model vs Discriminative Model

    In this post, we are going to compare the two types of machine learning models-generative model and ...

  7. python基础-12 多线程queue 线程交互event 线程锁 自定义线程池 进程 进程锁 进程池 进程交互数据资源共享

    Python中的进程与线程 学习知识,我们不但要知其然,还是知其所以然.你做到了你就比别人NB. 我们先了解一下什么是进程和线程. 进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CP ...

  8. RMQ 的入门 hdu1806

    RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干次询问RMQ(i,j),返回数列A中下标在区间[i,j]中的最小/大值 ...

  9. ecshop 2.7 PC 微信扫描支付配置教程

    在ecshop支付过程中,有些是没有微信支付的,需要自己添加微信支付的模块,那么怎么添加呢,添加过程需要调试,本人花了很长时间才调试成功的pc微信扫描支付, 1,数据库添加微信支付方模块 2,后台设置 ...

  10. HCL AppScan Standard 9.0.3.13

    https://pan.baidu.com/s/1mh97vyJdWy1CmF589jZJhQ 网盘密码: q31g / 压缩密码:shungg.cn http://www.shungg.cn/pos ...